fix hardmax dt #15
GitHub Actions / Test Results
failed
Aug 25, 2023 in 0s
3 fail, 3 563 pass in 1m 59s
Annotations
Check warning on line 0 in tests.importer.onnx_.basic.test_hardmax
github-actions / Test Results
test_hardmax[0-in_shape0] (tests.importer.onnx_.basic.test_hardmax) failed
test_results/onnx_basic.xml [took 0s]
Raw output
AssertionError: Fault result in infer + Fail [ infer cpu ptq ] Output 0:cosine similarity = 0.0, threshold = 0.98
assert False
in_shape = [1, 3, 16, 16], axis = 0
request = <FixtureRequest for <Function test_hardmax[0-in_shape0]>>
@pytest.mark.parametrize('in_shape', in_shapes)
@pytest.mark.parametrize('axis', axes)
def test_hardmax(in_shape, axis, request):
model_def = _make_module(in_shape, axis)
runner = OnnxTestRunner(request.node.name)
model_file = runner.from_onnx_helper(model_def)
> runner.run(model_file)
tests/importer/onnx_/basic/test_hardmax.py:88:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
tests/onnx_test_runner.py:58: in run
super().run(model_file)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <onnx_test_runner.OnnxTestRunner object at 0x7fb510414b90>
model_file = 'tests_output/test_hardmax_0-in_shape0_/simplified.onnx'
def run(self, model_file: Union[List[str], str]):
if not self.inputs:
self.parse_model(model_file)
self.generate_all_data()
self.write_compile_opt()
expected = self.cpu_infer(model_file)
targets = self.cfg['target']
model_content = self.read_model_file(model_file)
import_options = nncase.ImportOptions()
compiler = None
dump_hist = self.cfg['dump_hist']
for k_target, v_target in targets.items():
tmp_dir = os.path.join(self.case_dir, 'tmp')
if v_target['eval'] or v_target['infer']:
compile_options = self.get_compile_options(k_target, tmp_dir)
compiler = nncase.Compiler(compile_options)
self.import_model(compiler, model_content, import_options)
for stage in ['eval', 'infer']:
if v_target[stage]:
for k_mode, v_mode in v_target['mode'].items():
if v_mode['enabled']:
os.makedirs(tmp_dir, exist_ok=True)
if stage == 'eval':
actual = self.run_evaluator(compiler, tmp_dir)
else:
actual = self.run_inference(
compiler, k_target, v_mode['enabled'], tmp_dir)
target_dir = os.path.join(self.case_dir, stage, k_target)
os.makedirs(target_dir, exist_ok=True)
mode_dir = os.path.join(target_dir, k_mode)
shutil.move(tmp_dir, mode_dir)
judge, result = self.compare_results(
expected, actual, stage, k_target, v_target['similarity_name'], k_mode, v_mode['threshold'], dump_hist, mode_dir)
if stage == 'infer' and self.cfg['dump_infer']:
self.infer_dict['result'] = 'Pass' if judge else 'Fail'
self.infer_dict['remark'] = result.replace('\n', ' ')
dump_dict_to_json(self.infer_dict, self.infer_file)
if not judge:
if test_utils.in_ci():
self.clear(self.case_dir)
> assert (judge), f"Fault result in {stage} + {result}"
E AssertionError: Fault result in infer + Fail [ infer cpu ptq ] Output 0:cosine similarity = 0.0, threshold = 0.98
E assert False
tests/test_runner.py:275: AssertionError
Check warning on line 0 in tests.importer.onnx_.basic.test_hardmax
github-actions / Test Results
test_hardmax[-2-in_shape0] (tests.importer.onnx_.basic.test_hardmax) failed
test_results/onnx_basic.xml [took 0s]
Raw output
AssertionError: Fault result in infer + Fail [ infer cpu ptq ] Output 0:cosine similarity = 0.0, threshold = 0.98
assert False
in_shape = [1, 3, 16, 16], axis = -2
request = <FixtureRequest for <Function test_hardmax[-2-in_shape0]>>
@pytest.mark.parametrize('in_shape', in_shapes)
@pytest.mark.parametrize('axis', axes)
def test_hardmax(in_shape, axis, request):
model_def = _make_module(in_shape, axis)
runner = OnnxTestRunner(request.node.name)
model_file = runner.from_onnx_helper(model_def)
> runner.run(model_file)
tests/importer/onnx_/basic/test_hardmax.py:88:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
tests/onnx_test_runner.py:58: in run
super().run(model_file)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <onnx_test_runner.OnnxTestRunner object at 0x7fb51039fdd0>
model_file = 'tests_output/test_hardmax_-2-in_shape0_/simplified.onnx'
def run(self, model_file: Union[List[str], str]):
if not self.inputs:
self.parse_model(model_file)
self.generate_all_data()
self.write_compile_opt()
expected = self.cpu_infer(model_file)
targets = self.cfg['target']
model_content = self.read_model_file(model_file)
import_options = nncase.ImportOptions()
compiler = None
dump_hist = self.cfg['dump_hist']
for k_target, v_target in targets.items():
tmp_dir = os.path.join(self.case_dir, 'tmp')
if v_target['eval'] or v_target['infer']:
compile_options = self.get_compile_options(k_target, tmp_dir)
compiler = nncase.Compiler(compile_options)
self.import_model(compiler, model_content, import_options)
for stage in ['eval', 'infer']:
if v_target[stage]:
for k_mode, v_mode in v_target['mode'].items():
if v_mode['enabled']:
os.makedirs(tmp_dir, exist_ok=True)
if stage == 'eval':
actual = self.run_evaluator(compiler, tmp_dir)
else:
actual = self.run_inference(
compiler, k_target, v_mode['enabled'], tmp_dir)
target_dir = os.path.join(self.case_dir, stage, k_target)
os.makedirs(target_dir, exist_ok=True)
mode_dir = os.path.join(target_dir, k_mode)
shutil.move(tmp_dir, mode_dir)
judge, result = self.compare_results(
expected, actual, stage, k_target, v_target['similarity_name'], k_mode, v_mode['threshold'], dump_hist, mode_dir)
if stage == 'infer' and self.cfg['dump_infer']:
self.infer_dict['result'] = 'Pass' if judge else 'Fail'
self.infer_dict['remark'] = result.replace('\n', ' ')
dump_dict_to_json(self.infer_dict, self.infer_file)
if not judge:
if test_utils.in_ci():
self.clear(self.case_dir)
> assert (judge), f"Fault result in {stage} + {result}"
E AssertionError: Fault result in infer + Fail [ infer cpu ptq ] Output 0:cosine similarity = 0.0, threshold = 0.98
E assert False
tests/test_runner.py:275: AssertionError
Check warning on line 0 in tests.importer.onnx_.basic.test_hardmax
github-actions / Test Results
test_hardmax[-4-in_shape0] (tests.importer.onnx_.basic.test_hardmax) failed
test_results/onnx_basic.xml [took 0s]
Raw output
AssertionError: Fault result in infer + Fail [ infer cpu ptq ] Output 0:cosine similarity = 0.0, threshold = 0.98
assert False
in_shape = [1, 3, 16, 16], axis = -4
request = <FixtureRequest for <Function test_hardmax[-4-in_shape0]>>
@pytest.mark.parametrize('in_shape', in_shapes)
@pytest.mark.parametrize('axis', axes)
def test_hardmax(in_shape, axis, request):
model_def = _make_module(in_shape, axis)
runner = OnnxTestRunner(request.node.name)
model_file = runner.from_onnx_helper(model_def)
> runner.run(model_file)
tests/importer/onnx_/basic/test_hardmax.py:88:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
tests/onnx_test_runner.py:58: in run
super().run(model_file)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <onnx_test_runner.OnnxTestRunner object at 0x7fb5103bcb50>
model_file = 'tests_output/test_hardmax_-4-in_shape0_/simplified.onnx'
def run(self, model_file: Union[List[str], str]):
if not self.inputs:
self.parse_model(model_file)
self.generate_all_data()
self.write_compile_opt()
expected = self.cpu_infer(model_file)
targets = self.cfg['target']
model_content = self.read_model_file(model_file)
import_options = nncase.ImportOptions()
compiler = None
dump_hist = self.cfg['dump_hist']
for k_target, v_target in targets.items():
tmp_dir = os.path.join(self.case_dir, 'tmp')
if v_target['eval'] or v_target['infer']:
compile_options = self.get_compile_options(k_target, tmp_dir)
compiler = nncase.Compiler(compile_options)
self.import_model(compiler, model_content, import_options)
for stage in ['eval', 'infer']:
if v_target[stage]:
for k_mode, v_mode in v_target['mode'].items():
if v_mode['enabled']:
os.makedirs(tmp_dir, exist_ok=True)
if stage == 'eval':
actual = self.run_evaluator(compiler, tmp_dir)
else:
actual = self.run_inference(
compiler, k_target, v_mode['enabled'], tmp_dir)
target_dir = os.path.join(self.case_dir, stage, k_target)
os.makedirs(target_dir, exist_ok=True)
mode_dir = os.path.join(target_dir, k_mode)
shutil.move(tmp_dir, mode_dir)
judge, result = self.compare_results(
expected, actual, stage, k_target, v_target['similarity_name'], k_mode, v_mode['threshold'], dump_hist, mode_dir)
if stage == 'infer' and self.cfg['dump_infer']:
self.infer_dict['result'] = 'Pass' if judge else 'Fail'
self.infer_dict['remark'] = result.replace('\n', ' ')
dump_dict_to_json(self.infer_dict, self.infer_file)
if not judge:
if test_utils.in_ci():
self.clear(self.case_dir)
> assert (judge), f"Fault result in {stage} + {result}"
E AssertionError: Fault result in infer + Fail [ infer cpu ptq ] Output 0:cosine similarity = 0.0, threshold = 0.98
E assert False
tests/test_runner.py:275: AssertionError
Loading