Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding Examples of single event runs #133

Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
138 changes: 0 additions & 138 deletions example/GW150914.py

This file was deleted.

152 changes: 152 additions & 0 deletions example/GW150914_D.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
import jax
import jax.numpy as jnp

from jimgw.jim import Jim
from jimgw.prior import CombinePrior, UniformPrior, CosinePrior, SinePrior, PowerLawPrior
from jimgw.single_event.detector import H1, L1
from jimgw.single_event.likelihood import TransientLikelihoodFD
from jimgw.single_event.waveform import RippleIMRPhenomD
from jimgw.transforms import BoundToUnbound
from jimgw.single_event.transforms import ComponentMassesToChirpMassSymmetricMassRatioTransform, SkyFrameToDetectorFrameSkyPositionTransform, ComponentMassesToChirpMassMassRatioTransform
from jimgw.single_event.utils import Mc_q_to_m1_m2
from flowMC.strategy.optimization import optimization_Adam

jax.config.update("jax_enable_x64", True)

###########################################
########## First we grab data #############
###########################################

# first, fetch a 4s segment centered on GW150914
gps = 1126259462.4
duration = 4
post_trigger_duration = 2
start_pad = duration - post_trigger_duration
end_pad = post_trigger_duration
fmin = 20.0
fmax = 1024.0

ifos = [H1, L1]

for ifo in ifos:
ifo.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2)

M_c_min, M_c_max = 10.0, 80.0
q_min, q_max = 0.125, 1.0
m_1_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_max)[0], Mc_q_to_m1_m2(M_c_max, q_min)[0], parameter_names=["m_1"])
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This does not corresponds to Mc_max =80.0, please check for accuracy

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this is related to the fact that when you sample from UniformPrior, it just randomly gives you a value within the range you have defined. Now, without any constraint, the range of m_1 and m_2 overlaps with each other, so m_2 can be bigger than m_1 when you try to sample on it. When m_2 is bigger than m_1, it gives strange value of M_c and q.

I think its better to build a special prior class for m_1 and m_2, in which we add the constraint m_1 > m_2 in sampling.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think the value looks fine to me. I can test it with @xuyuon tomorrow.

m_2_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_min)[1], Mc_q_to_m1_m2(M_c_max, q_max)[1], parameter_names=["m_2"])
s1z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s1_z"])
s2z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s2_z"])
dL_prior = PowerLawPrior(1.0, 2000.0, 2.0, parameter_names=["d_L"])
t_c_prior = UniformPrior(-0.05, 0.05, parameter_names=["t_c"])
phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"])
iota_prior = SinePrior(parameter_names=["iota"])
psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"])
ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"])
dec_prior = CosinePrior(parameter_names=["dec"])

prior = CombinePrior(
[
m_1_prior,
m_2_prior,
s1z_prior,
s2z_prior,
dL_prior,
t_c_prior,
phase_c_prior,
iota_prior,
psi_prior,
ra_prior,
dec_prior,
]
)

sample_transforms = [
ComponentMassesToChirpMassMassRatioTransform(name_mapping=[["m_1", "m_2"], ["M_c", "q"]]),
BoundToUnbound(name_mapping = [["M_c"], ["M_c_unbounded"]], original_lower_bound=M_c_min, original_upper_bound=M_c_max),
BoundToUnbound(name_mapping = [["q"], ["q_unbounded"]], original_lower_bound=q_min, original_upper_bound=q_max),
BoundToUnbound(name_mapping = [["s1_z"], ["s1_z_unbounded"]] , original_lower_bound=-1.0, original_upper_bound=1.0),
BoundToUnbound(name_mapping = [["s2_z"], ["s2_z_unbounded"]] , original_lower_bound=-1.0, original_upper_bound=1.0),
BoundToUnbound(name_mapping = [["d_L"], ["d_L_unbounded"]] , original_lower_bound=1.0, original_upper_bound=2000.0),
BoundToUnbound(name_mapping = [["t_c"], ["t_c_unbounded"]] , original_lower_bound=-0.05, original_upper_bound=0.05),
BoundToUnbound(name_mapping = [["phase_c"], ["phase_c_unbounded"]] , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi),
BoundToUnbound(name_mapping = [["iota"], ["iota_unbounded"]], original_lower_bound=0., original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = [["psi"], ["psi_unbounded"]], original_lower_bound=0.0, original_upper_bound=jnp.pi),
SkyFrameToDetectorFrameSkyPositionTransform(name_mapping = [["ra", "dec"], ["zenith", "azimuth"]], gps_time=gps, ifos=ifos),
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This does not work with the new predefined transform. Please change accordingly

BoundToUnbound(name_mapping = [["zenith"], ["zenith_unbounded"]], original_lower_bound=0.0, original_upper_bound=jnp.pi),
BoundToUnbound(name_mapping = [["azimuth"], ["azimuth_unbounded"]], original_lower_bound=0.0, original_upper_bound=2 * jnp.pi),
]

likelihood_transforms = [
ComponentMassesToChirpMassSymmetricMassRatioTransform(name_mapping=[["m_1", "m_2"], ["M_c", "eta"]]),
]

likelihood = TransientLikelihoodFD(
ifos,
waveform=RippleIMRPhenomD(),
trigger_time=gps,
duration=4,
post_trigger_duration=2,
)


mass_matrix = jnp.eye(11)
mass_matrix = mass_matrix.at[1, 1].set(1e-3)
mass_matrix = mass_matrix.at[5, 5].set(1e-3)
local_sampler_arg = {"step_size": mass_matrix * 3e-3}

Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1)

n_epochs = 30
n_loop_training = 100
learning_rate = 1e-4


jim = Jim(
likelihood,
prior,
sample_transforms=sample_transforms,
likelihood_transforms=likelihood_transforms,
n_loop_training=n_loop_training,
n_loop_production=20,
n_local_steps=10,
n_global_steps=1000,
n_chains=500,
n_epochs=n_epochs,
learning_rate=learning_rate,
n_max_examples=30000,
n_flow_samples=100000,
momentum=0.9,
batch_size=30000,
use_global=True,
train_thinning=1,
output_thinning=10,
local_sampler_arg=local_sampler_arg,
strategies=[Adam_optimizer, "default"],
)

jim.sample(jax.random.PRNGKey(42))
jim.get_samples()
jim.print_summary()


###########################################
########## Visualize the Data #############
###########################################
import corner
import matplotlib.pyplot as plt
import numpy as np

production_summary = jim.sampler.get_sampler_state(training=False)
production_chain = production_summary["chains"].reshape(-1, len(jim.parameter_names)).T
if jim.sample_transforms:
transformed_chain = jim.add_name(production_chain)
for transform in reversed(jim.sample_transforms):
transformed_chain = transform.backward(transformed_chain)
result = transformed_chain
labels = list(transformed_chain.keys())

samples = np.array(list(result.values())).reshape(int(len(labels)), -1) # flatten the array
transposed_array = samples.T # transpose the array
figure = corner.corner(transposed_array, labels=labels, plot_datapoints=False, title_quantiles=[0.16, 0.5, 0.84], show_titles=True, title_fmt='g', use_math_text=True)
plt.savefig("GW1500914_D.jpeg")
Loading
Loading