Skip to content

Commit

Permalink
Merge pull request #43 from kazewong/41-add-more-prior-classes-and-ad…
Browse files Browse the repository at this point in the history
…d-composite-prior-example

41 add more prior classes and add composite prior example.

Unconstrained Uniform, Spherical Prior, and composite prior are now added to the prior pool, with composite prior being the default people should use. Additional class of prior will be added in a separate thread in favor of merging other PRs.
  • Loading branch information
kazewong authored Nov 28, 2023
2 parents 7e8e15a + 627cc85 commit fdc89f1
Show file tree
Hide file tree
Showing 7 changed files with 424 additions and 84 deletions.
1 change: 1 addition & 0 deletions .github/workflows/python-package.yml
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@ jobs:
python -m pip install --upgrade pip
python -m pip install pytest
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
python -m pip install .
- name: Test with pytest
run: |
pytest
87 changes: 64 additions & 23 deletions example/GW150914.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
from jimgw.detector import H1, L1
from jimgw.likelihood import HeterodynedTransientLikelihoodFD, TransientLikelihoodFD
from jimgw.waveform import RippleIMRPhenomD
from jimgw.prior import Uniform
from jimgw.prior import Unconstrained_Uniform, Composite
import jax.numpy as jnp
import jax

Expand All @@ -27,28 +27,69 @@
H1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2)
L1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2)

prior = Uniform(
xmin=[10, 0.125, -1.0, -1.0, 0.0, -0.05, 0.0, -1, 0.0, 0.0, -1.0],
xmax=[80.0, 1.0, 1.0, 1.0, 2000.0, 0.05, 2 * jnp.pi, 1.0, jnp.pi, 2 * jnp.pi, 1.0],
naming=[
"M_c",
"q",
"s1_z",
"s2_z",
"d_L",
"t_c",
"phase_c",
"cos_iota",
"psi",
"ra",
"sin_dec",
],
transforms = {"q": ("eta", lambda params: params['q']/(1+params['q'])**2),
"cos_iota": ("iota",lambda params: jnp.arccos(jnp.arcsin(jnp.sin(params['cos_iota']/2*jnp.pi))*2/jnp.pi)),
"sin_dec": ("dec",lambda params: jnp.arcsin(jnp.arcsin(jnp.sin(params['sin_dec']/2*jnp.pi))*2/jnp.pi))} # sin and arcsin are periodize cos_iota and sin_dec
Mc_prior = Unconstrained_Uniform(10.0, 80.0, naming=["M_c"])
q_prior = Unconstrained_Uniform(
0.125,
1.0,
naming=["q"],
transforms={"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2)},
)
s1z_prior = Unconstrained_Uniform(-1.0, 1.0, naming=["s1_z"])
s2z_prior = Unconstrained_Uniform(-1.0, 1.0, naming=["s2_z"])
dL_prior = Unconstrained_Uniform(0.0, 2000.0, naming=["d_L"])
t_c_prior = Unconstrained_Uniform(-0.05, 0.05, naming=["t_c"])
phase_c_prior = Unconstrained_Uniform(0.0, 2 * jnp.pi, naming=["phase_c"])
cos_iota_prior = Unconstrained_Uniform(
-1.0,
1.0,
naming=["cos_iota"],
transforms={
"cos_iota": (
"iota",
lambda params: jnp.arccos(
jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi
),
)
},
)
psi_prior = Unconstrained_Uniform(0.0, jnp.pi, naming=["psi"])
ra_prior = Unconstrained_Uniform(0.0, 2 * jnp.pi, naming=["ra"])
sin_dec_prior = Unconstrained_Uniform(
-1.0,
1.0,
naming=["sin_dec"],
transforms={
"sin_dec": (
"dec",
lambda params: jnp.arcsin(
jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi
),
)
},
)

prior = Composite(
[
Mc_prior,
q_prior,
s1z_prior,
s2z_prior,
dL_prior,
t_c_prior,
phase_c_prior,
cos_iota_prior,
psi_prior,
ra_prior,
sin_dec_prior,
]
)
likelihood = TransientLikelihoodFD(
[H1, L1],
waveform=RippleIMRPhenomD(),
trigger_time=gps,
duration=4,
post_trigger_duration=2,
)
likelihood = TransientLikelihoodFD([H1, L1], waveform=RippleIMRPhenomD(), trigger_time=gps, duration=4, post_trigger_duration=2)
# likelihood = HeterodynedTransientLikelihoodFD([H1, L1], prior=prior, bounds=[prior.xmin, prior.xmax], waveform=RippleIMRPhenomD(), trigger_time=gps, duration=4, post_trigger_duration=2)


mass_matrix = jnp.eye(11)
Expand Down Expand Up @@ -76,5 +117,5 @@
local_sampler_arg=local_sampler_arg,
)

jim.maximize_likelihood([prior.xmin, prior.xmax])
# jim.maximize_likelihood([prior.xmin, prior.xmax])
jim.sample(jax.random.PRNGKey(42))
86 changes: 64 additions & 22 deletions example/GW150914_PV2.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@
from jimgw.jim import Jim
from jimgw.detector import H1, L1
from jimgw.likelihood import HeterodynedTransientLikelihoodFD, TransientLikelihoodFD
from jimgw.waveform import RippleIMRPhenomD, RippleIMRPhenomPv2
from jimgw.prior import Uniform
from jimgw.waveform import RippleIMRPhenomPv2
from jimgw.prior import Uniform, Composite, Sphere
import jax.numpy as jnp
import jax

Expand All @@ -28,19 +28,66 @@
L1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2)

waveform = RippleIMRPhenomPv2(f_ref=20)
prior = Uniform(
xmin = [10, 0.125, 0, 0, 0, 0, 0, 0, 0., -0.05, 0., -1, 0., 0.,-1.],
xmax = [80., 1., jnp.pi, 2*jnp.pi, 1., jnp.pi, 2*jnp.pi, 1., 2000., 0.05, 2*jnp.pi, 1., jnp.pi, 2*jnp.pi, 1.],
naming = ["M_c", "q", "s1_theta", "s1_phi", "s1_mag", "s2_theta", "s2_phi", "s2_mag", "d_L", "t_c", "phase_c", "cos_iota", "psi", "ra", "sin_dec"],
transforms = {"q": ("eta", lambda params: params['q']/(1+params['q'])**2),
"s1_theta": ("s1_x", lambda params: jnp.sin(params['s1_theta'])*jnp.cos(params['s1_phi'])*params['s1_mag']),
"s1_phi": ("s1_y", lambda params: jnp.sin(params['s1_theta'])*jnp.sin(params['s1_phi'])*params['s1_mag']),
"s1_mag": ("s1_z", lambda params: jnp.cos(params['s1_theta'])*params['s1_mag']),
"s2_theta": ("s2_x", lambda params: jnp.sin(params['s2_theta'])*jnp.cos(params['s2_phi'])*params['s2_mag']),
"s2_phi": ("s2_y", lambda params: jnp.sin(params['s2_theta'])*jnp.sin(params['s2_phi'])*params['s2_mag']),
"s2_mag": ("s2_z", lambda params: jnp.cos(params['s2_theta'])*params['s2_mag']),
"cos_iota": ("iota",lambda params: jnp.arccos(jnp.arcsin(jnp.sin(params['cos_iota']/2*jnp.pi))*2/jnp.pi)),
"sin_dec": ("dec",lambda params: jnp.arcsin(jnp.arcsin(jnp.sin(params['sin_dec']/2*jnp.pi))*2/jnp.pi))} # sin and arcsin are periodize cos_iota and sin_dec

###########################################
########## Set up priors ##################
###########################################

Mc_prior = Uniform(10.0, 80.0, naming=["M_c"])
q_prior = Uniform(
0.125,
1.0,
naming=["q"],
transforms={"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2)},
)
s1_prior = Sphere(naming="s1")
s2_prior = Sphere(naming="s2")
dL_prior = Uniform(0.0, 2000.0, naming=["d_L"])
t_c_prior = Uniform(-0.05, 0.05, naming=["t_c"])
phase_c_prior = Uniform(0.0, 2 * jnp.pi, naming=["phase_c"])
cos_iota_prior = Uniform(
-1.0,
1.0,
naming=["cos_iota"],
transforms={
"cos_iota": (
"iota",
lambda params: jnp.arccos(
jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi
),
)
},
)
psi_prior = Uniform(0.0, jnp.pi, naming=["psi"])
ra_prior = Uniform(0.0, 2 * jnp.pi, naming=["ra"])
sin_dec_prior = Uniform(
-1.0,
1.0,
naming=["sin_dec"],
transforms={
"sin_dec": (
"dec",
lambda params: jnp.arcsin(
jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi
),
)
},
)

prior = Composite(
[
Mc_prior,
q_prior,
s1_prior,
s2_prior,
dL_prior,
t_c_prior,
phase_c_prior,
cos_iota_prior,
psi_prior,
ra_prior,
sin_dec_prior,
],
)
likelihood = TransientLikelihoodFD([H1, L1], waveform=waveform, trigger_time=gps, duration=4, post_trigger_duration=2)
# likelihood = HeterodynedTransientLikelihoodFD([H1, L1], prior=prior, bounds=[prior.xmin, prior.xmax], waveform=RippleIMRPhenomD(), trigger_time=gps, duration=4, post_trigger_duration=2)
Expand All @@ -54,7 +101,7 @@
jim = Jim(
likelihood,
prior,
n_loop_training=200,
n_loop_training=100,
n_loop_production=10,
n_local_steps=300,
n_global_steps=300,
Expand All @@ -63,17 +110,12 @@
learning_rate=0.001,
max_samples = 60000,
momentum=0.9,
batch_size=30000,
batch_size=60000,
use_global=True,
keep_quantile=0.,
train_thinning=1,
output_thinning=30,
local_sampler_arg=local_sampler_arg,
num_layers = 6,
hidden_size = [32,32],
num_bins = 8
)

jim.maximize_likelihood([prior.xmin, prior.xmax])
# initial_guess = jnp.array(jnp.load('initial.npz')['chain'])
jim.sample(jax.random.PRNGKey(42))
81 changes: 81 additions & 0 deletions example/GW150914_PV2_newglobal.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import time
from jimgw.jim import Jim
from jimgw.detector import H1, L1
from jimgw.likelihood import HeterodynedTransientLikelihoodFD, TransientLikelihoodFD
from jimgw.waveform import RippleIMRPhenomD, RippleIMRPhenomPv2
from jimgw.prior import Uniform, Unconstrained_Uniform, Composite, Sphere
import jax.numpy as jnp
import jax


jax.config.update("jax_enable_x64", True)

###########################################
########## First we grab data #############
###########################################

total_time_start = time.time()

# first, fetch a 4s segment centered on GW150914
gps = 1126259462.4
start = gps - 2
end = gps + 2
fmin = 20.0
fmax = 1024.0

ifos = ["H1", "L1"]

H1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2)
L1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2)

waveform = RippleIMRPhenomPv2(f_ref=20)

Mc_prior = Unconstrained_Uniform(10., 80., naming=["M_c"])
q_prior = Unconstrained_Uniform(0.125, 1., naming=["q"], transforms={"q": ("eta", lambda params: params['q']/(1+params['q'])**2)})
s1_prior = Sphere("s1")
s2_prior = Sphere("s2")
dL_prior = Unconstrained_Uniform(0., 2000., naming=["d_L"])
t_c_prior = Unconstrained_Uniform(-0.05, 0.05, naming=["t_c"])
phase_c_prior = Unconstrained_Uniform(0., 2*jnp.pi, naming=["phase_c"])
cos_iota_prior = Unconstrained_Uniform(-1., 1., naming=["cos_iota"], transforms={"cos_iota": ("iota",lambda params: jnp.arccos(jnp.arcsin(jnp.sin(params['cos_iota']/2*jnp.pi))*2/jnp.pi))})
psi_prior = Unconstrained_Uniform(0., jnp.pi, naming=["psi"])
ra_prior = Unconstrained_Uniform(0., 2*jnp.pi, naming=["ra"])
sin_dec_prior = Unconstrained_Uniform(-1., 1., naming=["sin_dec"], transforms={"sin_dec": ("dec",lambda params: jnp.arcsin(jnp.arcsin(jnp.sin(params['sin_dec']/2*jnp.pi))*2/jnp.pi))})

prior = Composite([Mc_prior, q_prior, s1_prior, s2_prior, dL_prior, t_c_prior, phase_c_prior, cos_iota_prior, psi_prior, ra_prior, sin_dec_prior])

likelihood = TransientLikelihoodFD([H1, L1], waveform=waveform, trigger_time=gps, duration=4, post_trigger_duration=2)


mass_matrix = jnp.eye(prior.n_dim)
# mass_matrix = mass_matrix.at[1, 1].set(1e-3)
# mass_matrix = mass_matrix.at[9, 9].set(1e-3)
local_sampler_arg = {"step_size": mass_matrix * 3e-3}


jim = Jim(
likelihood,
prior,
n_loop_training=50,
n_loop_production=10,
n_local_steps=300,
n_global_steps=300,
n_chains=500,
n_epochs=300,
learning_rate=0.001,
max_samples = 60000,
momentum=0.9,
batch_size=30000,
use_global=True,
keep_quantile=0.,
train_thinning=1,
output_thinning=30,
local_sampler_arg=local_sampler_arg,
num_layers = 6,
hidden_size = [32,32],
num_bins = 8
)

# jim.maximize_likelihood([prior.xmin, prior.xmax])
# initial_guess = jnp.array(jnp.load('initial.npz')['chain'])
jim.sample(jax.random.PRNGKey(42))
24 changes: 22 additions & 2 deletions src/jimgw/jim.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from jaxtyping import Array
import jax
import jax.numpy as jnp
from flowMC.sampler.flowHMC import flowHMC

class Jim(object):
"""
Expand All @@ -30,13 +31,30 @@ def __init__(self, likelihood: LikelihoodBase, prior: Prior, **kwargs):

local_sampler = MALA(self.posterior, True, local_sampler_arg) # Remember to add routine to find automated mass matrix

flowHMC_params = kwargs.get("flowHMC_params", {})
model = MaskedCouplingRQSpline(self.Prior.n_dim, num_layers, hidden_size, num_bins, rng_key_set[-1])
if len(flowHMC_params) > 0:
global_sampler = flowHMC(
self.posterior,
True,
model,
params={
"step_size": flowHMC_params["step_size"],
"n_leapfrog": flowHMC_params["n_leapfrog"],
"condition_matrix": flowHMC_params["condition_matrix"],
},
)
else:
global_sampler = None


self.Sampler = Sampler(
self.Prior.n_dim,
rng_key_set,
None,
local_sampler,
model,
global_sampler = global_sampler,
**kwargs)


Expand All @@ -59,13 +77,15 @@ def maximize_likelihood(self, bounds: tuple[Array,Array], set_nwalkers: int = 10
return best_fit

def posterior(self, params: Array, data: dict):
named_params = self.Prior.add_name(params, transform_name=True, transform_value=True)
return self.Likelihood.evaluate(named_params, data) + self.Prior.log_prob(params)
prior_params = self.Prior.add_name(params.T)
prior = self.Prior.log_prob(prior_params)
return self.Likelihood.evaluate(self.Prior.transform(prior_params), data) + prior

def sample(self, key: jax.random.PRNGKey,
initial_guess: Array = None):
if initial_guess is None:
initial_guess = self.Prior.sample(key, self.Sampler.n_chains)
initial_guess = jnp.stack([i for i in initial_guess.values()]).T
self.Sampler.sample(initial_guess, None)

def print_summary(self):
Expand Down
Loading

0 comments on commit fdc89f1

Please sign in to comment.