Skip to content

Commit

Permalink
Merge pull request #42 from ThibeauWouters/relative-binning-fix
Browse files Browse the repository at this point in the history
Relative binning fix
  • Loading branch information
kazewong authored Dec 3, 2023
2 parents 1e16222 + 205cba6 commit f3f21e0
Show file tree
Hide file tree
Showing 8 changed files with 550 additions and 188 deletions.
6 changes: 3 additions & 3 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,17 +4,17 @@ repos:
hooks:
- id: black
- repo: https://github.com/charliermarsh/ruff-pre-commit
rev: 'v0.0.290'
rev: 'v0.1.6'
hooks:
- id: ruff
args: ["--fix"]
- repo: https://github.com/RobertCraigie/pyright-python
rev: v1.1.327
rev: v1.1.338
hooks:
- id: pyright
additional_dependencies: [beartype, einops, jax, jaxtyping, pytest, tensorflow, tf2onnx, typing_extensions]
- repo: https://github.com/nbQA-dev/nbQA
rev: 1.7.0
rev: 1.7.1
hooks:
- id: nbqa-black
additional_dependencies: [ipython==8.12, black]
Expand Down
14 changes: 8 additions & 6 deletions example/GW150914.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,15 +17,17 @@

# first, fetch a 4s segment centered on GW150914
gps = 1126259462.4
start = gps - 2
end = gps + 2
duration = 4
post_trigger_duration = 2
start_pad = duration - post_trigger_duration
end_pad = post_trigger_duration
fmin = 20.0
fmax = 1024.0

ifos = ["H1", "L1"]

H1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2)
L1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2)
H1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2)
L1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2)

Mc_prior = Unconstrained_Uniform(10.0, 80.0, naming=["M_c"])
q_prior = Unconstrained_Uniform(
Expand Down Expand Up @@ -91,6 +93,7 @@
post_trigger_duration=2,
)

likelihood = TransientLikelihoodFD([H1, L1], waveform=RippleIMRPhenomD(), trigger_time=gps, duration=4, post_trigger_duration=2)

mass_matrix = jnp.eye(11)
mass_matrix = mass_matrix.at[1, 1].set(1e-3)
Expand All @@ -100,7 +103,7 @@
jim = Jim(
likelihood,
prior,
n_loop_training=200,
n_loop_training=100,
n_loop_production=10,
n_local_steps=150,
n_global_steps=150,
Expand All @@ -117,5 +120,4 @@
local_sampler_arg=local_sampler_arg,
)

# jim.maximize_likelihood([prior.xmin, prior.xmax])
jim.sample(jax.random.PRNGKey(42))
89 changes: 89 additions & 0 deletions example/GW150914_heterodyne.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
import time
from jimgw.jim import Jim
from jimgw.detector import H1, L1
from jimgw.likelihood import HeterodynedTransientLikelihoodFD, TransientLikelihoodFD
from jimgw.waveform import RippleIMRPhenomD
from jimgw.prior import Uniform
import jax.numpy as jnp
import jax

jax.config.update("jax_enable_x64", True)

###########################################
########## First we grab data #############
###########################################

total_time_start = time.time()

# first, fetch a 4s segment centered on GW150914
gps = 1126259462.4
duration = 4
post_trigger_duration = 2
start_pad = duration - post_trigger_duration
end_pad = post_trigger_duration
fmin = 20.0
fmax = 1024.0

ifos = ["H1", "L1"]

H1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2)
L1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2)

prior = Uniform(
xmin=[10, 0.125, -1.0, -1.0, 0.0, -0.05, 0.0, -1, 0.0, 0.0, -1.0],
xmax=[80.0, 1.0, 1.0, 1.0, 2000.0, 0.05, 2 * jnp.pi, 1.0, jnp.pi, 2 * jnp.pi, 1.0],
naming=[
"M_c",
"q",
"s1_z",
"s2_z",
"d_L",
"t_c",
"phase_c",
"cos_iota",
"psi",
"ra",
"sin_dec",
],
transforms = {"q": ("eta", lambda params: params['q']/(1+params['q'])**2),
"cos_iota": ("iota",lambda params: jnp.arccos(jnp.arcsin(jnp.sin(params['cos_iota']/2*jnp.pi))*2/jnp.pi)),
"sin_dec": ("dec",lambda params: jnp.arcsin(jnp.arcsin(jnp.sin(params['sin_dec']/2*jnp.pi))*2/jnp.pi))} # sin and arcsin are periodize cos_iota and sin_dec
)

likelihood = HeterodynedTransientLikelihoodFD(
[H1, L1],
prior=prior,
bounds=[prior.xmin, prior.xmax],
waveform=RippleIMRPhenomD(),
trigger_time=gps,
duration=duration,
post_trigger_duration=post_trigger_duration,
n_loops=300
)

mass_matrix = jnp.eye(11)
mass_matrix = mass_matrix.at[1, 1].set(1e-3)
mass_matrix = mass_matrix.at[5, 5].set(1e-3)
local_sampler_arg = {"step_size": mass_matrix * 3e-3}

jim = Jim(
likelihood,
prior,
n_loop_training=100,
n_loop_production=10,
n_local_steps=150,
n_global_steps=150,
n_chains=500,
n_epochs=50,
learning_rate=0.001,
max_samples=45000,
momentum=0.9,
batch_size=50000,
use_global=True,
keep_quantile=0.0,
train_thinning=1,
output_thinning=10,
local_sampler_arg=local_sampler_arg,
)

jim.sample(jax.random.PRNGKey(42))
102 changes: 102 additions & 0 deletions example/GW170817.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
import time
from jimgw.jim import Jim
from jimgw.detector import H1, L1, V1
from jimgw.likelihood import HeterodynedTransientLikelihoodFD
from jimgw.waveform import RippleIMRPhenomD
from jimgw.prior import Uniform
from gwosc.datasets import event_gps
import jax.numpy as jnp
import jax

jax.config.update("jax_enable_x64", True)

###########################################
########## First we grab data #############
###########################################

total_time_start = time.time()

gps = event_gps("GW170817")
duration = 128
post_trigger_duration = 32
start_pad = duration - post_trigger_duration
end_pad = post_trigger_duration
fmin = 20.0
fmax = 1024.0

ifos = ["H1", "L1"]#, "V1"]

H1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=4*duration, tukey_alpha=0.05, gwpy_kwargs={"version": 2, "cache": False})
L1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=4*duration, tukey_alpha=0.05, gwpy_kwargs={"version": 2, "cache": False})
# V1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.05)

prior = Uniform(
xmin=[1.18, 0.125, -0.3, -0.3, 1., -0.1, 0.0, -1, 0.0, 0.0, -1.0],
xmax=[1.21, 1.0, 0.3, 0.3, 75., 0.1, 2 * jnp.pi, 1.0, jnp.pi, 2 * jnp.pi, 1.0],
naming=[
"M_c",
"q",
"s1_z",
"s2_z",
"d_L",
"t_c",
"phase_c",
"cos_iota",
"psi",
"ra",
"sin_dec",
],
transforms={
"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2),
"cos_iota": (
"iota",
lambda params: jnp.arccos(
jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi
),
),
"sin_dec": (
"dec",
lambda params: jnp.arcsin(
jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi
),
),
}, # sin and arcsin are periodize cos_iota and sin_dec
)

likelihood = HeterodynedTransientLikelihoodFD(
[H1],
prior=prior,
bounds=[prior.xmin, prior.xmax],
waveform=RippleIMRPhenomD(),
trigger_time=gps,
duration=duration,
post_trigger_duration=post_trigger_duration,
n_loops=1000
)

# mass_matrix = jnp.eye(11)
# mass_matrix = mass_matrix.at[1, 1].set(1e-3)
# mass_matrix = mass_matrix.at[5, 5].set(1e-3)
# local_sampler_arg = {"step_size": mass_matrix * 3e-3}

# jim = Jim(
# likelihood,
# prior,
# n_loop_training=100,
# n_loop_production=10,
# n_local_steps=150,
# n_global_steps=150,
# n_chains=500,
# n_epochs=50,
# learning_rate=0.001,
# max_samples=45000,
# momentum=0.9,
# batch_size=50000,
# use_global=True,
# keep_quantile=0.0,
# train_thinning=1,
# output_thinning=10,
# local_sampler_arg=local_sampler_arg,
# )

# jim.sample(jax.random.PRNGKey(42))
Loading

0 comments on commit f3f21e0

Please sign in to comment.