Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
katiana22 authored May 8, 2023
1 parent 24415bc commit 4205275
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -87,11 +87,11 @@ conda env create -f environment.yml
To train an autoencoder model following by the training of L-DeepONet with the reduced data run the following on the terminal:

```
python AE.py --method CAE --latent_dim 16 --n_samples 800 --n_epochs 1000 --ood 1 --noise 1
python DON.py --method CAE --latent_dim 16 --n_samples 800 --n_epochs 1000 --ood 1 --noise 1
python AE.py --method MLAE --latent_dim 16 --n_samples 800 --n_epochs 1000 --ood 1 --noise 1
python DON.py --method MLAE --latent_dim 16 --n_samples 800 --n_epochs 1000 --ood 1 --noise 1
```

In the example above, we chose to run L-DeepONet with a CAE, a latent dimensionality of 16, 800 in total train/test sampels and choose 1 for **ood** and **noise** which will generate results for out-of-distribution and noisy data.
In the example above, we chose to run L-DeepONet with a MLAE, a latent dimensionality of 16, 800 in total train/test sampels and choose 1 for **ood** and **noise** which will generate results for out-of-distribution and noisy data.

One can also use the script ```main.py``` to generate results for multiple methods (e.g., vanilla-AE, MLAE, CAE), latent dimensions (e.g., 16,25,81) and random seed numbers via the *reps* variable (e.g., run 5 times each with a loop) and generate comparative violin plots via the ```plot.py```.

Expand Down

0 comments on commit 4205275

Please sign in to comment.