-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #23 from kashefy/hmm
Hmm
- Loading branch information
Showing
51 changed files
with
38,519 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
\section{A latent variable model for temporal data} | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
\begin{frame}{Let's talk about the weather} | ||
|
||
\svspace{-5mm} | ||
|
||
\begin{center} | ||
\includegraphics[width=0.7\textwidth]{img/weather} | ||
\end{center} | ||
|
||
\begin{center} | ||
\slidesonly{ | ||
\only<2>{ | ||
\includegraphics[width=0.6\textwidth]{img/latentexample_gmm_weather} | ||
} | ||
} | ||
\only<3>{ | ||
\includegraphics<3>[width=0.6\textwidth]{img/latentexample_gmm_weather_icons} | ||
} | ||
\notesonly{\captionof{figure} | ||
{A density estimation from a latent variable model} | ||
}\slidesonly{\captionof*{figure} | ||
{A density estimation from a latent variable model} | ||
} | ||
\end{center} | ||
|
||
\end{frame} | ||
|
||
\begin{frame}{It's not all about amplitudes} | ||
|
||
\begin{center} | ||
\includegraphics[width=0.9\textwidth]{img/sin} | ||
\end{center} | ||
|
||
|
||
\end{frame} | ||
|
||
\begin{frame} | ||
|
||
\begin{itemize} | ||
\only<1->{ | ||
\item We have a sequence of observed events: $\vec x^{(t)} \in \R^N$ | ||
\item successive events $\vec x^{(t)}, \vec x^{(t-1)}$ \underline{cannot} be treated as independent | ||
} | ||
\slidesonly{ | ||
\svspace{10mm} | ||
\only<2>{ | ||
\begin{minipage}{0.45\textwidth} | ||
\captionof*{figure}{at t=1} | ||
\includegraphics[width=0.99\textwidth]{img/Living-Room-Scene_001_figure_1} | ||
\end{minipage} | ||
\begin{minipage}{0.45\textwidth} | ||
\captionof*{figure}{at t=2} | ||
\includegraphics[width=0.99\textwidth]{img/Living-Room-Scene_001_figure_2} | ||
\end{minipage}\\ | ||
|
||
\begin{minipage}{0.45\textwidth} | ||
\includegraphics[width=0.99\textwidth]{img/Living-Room-Scene_001_figure_3} | ||
\captionof*{figure}{at t=3} | ||
\end{minipage} | ||
\begin{minipage}{0.45\textwidth} | ||
\includegraphics[width=0.99\textwidth]{img/Living-Room-Scene_001_figure_4} | ||
\captionof*{figure}{at t=4} | ||
\end{minipage} | ||
} | ||
} | ||
\only<3->{ | ||
\item Assumption:\\ | ||
What we observe at every time step in the sequence $\{ \vec x^{(t)}\}_{t=1}^{T}$ is a result of the ``system'' being in a specific \emph{hidden state} at every time step $t$:\\ | ||
e.g. 1-out-of-$M$ coding for $M$ different states: | ||
\begin{itemize} | ||
\item $\vec{m}^{(t)} = \big( m_1^{(t)}, \dots, m_M^{(t)} \big)^\top \in \left\{ 0, 1 \right\}^M$ \\ | ||
\begin{align} | ||
m_q^{(t)} &= | ||
\begin{cases} | ||
1, & \text{if system is in state } q \text{ at time}~t\\ | ||
0, & \text{otherwise} | ||
\end{cases} | ||
%\hspace{0.5cm} | ||
\;\text{with} \; | ||
\sum_{q=1}^{M} m_q^{(t)} = 1 | ||
\end{align} | ||
\end{itemize} | ||
\item Our observed sequence is a result of this \emph{hidden state} sequence | ||
} | ||
\end{itemize} | ||
|
||
\end{frame} | ||
|
||
\begin{frame}{Only} | ||
\frametitle{Possibilities} | ||
|
||
We may want to do: | ||
\begin{itemize} | ||
\item<only@1> Describe the sequence of hidden states: | ||
$\{ \vec m^{(1)}, \ldots, \vec m^{(t)}, \ldots, \vec m^{(T)}\} = \{ \vec m^{(t)}\}_{t=1}^{T} \stackrel{\substack{\text{for}\\ \text{brevity}}}{=} \{ \vec m^{(t)}\}$ | ||
after observing the the sequence $\{\vec x^{(t)}\}$\\ | ||
|
||
\svspace{5mm} | ||
|
||
\begin{center} | ||
\includegraphics[width=0.7\textwidth]{img/weather_est_states} | ||
\notesonly{\captionof{figure}{Predict the sequence of hidden states}} | ||
\end{center} | ||
|
||
Example: hear sounds $\rightarrow$ what words were said? (transcribing speech) | ||
\item<only@2> Generate a sequence of observations given a sequence of hidden variables $\{\vec m^{(t)}\}$ | ||
\\ | ||
|
||
\svspace{5mm} | ||
|
||
\begin{center} | ||
\includegraphics[width=0.7\textwidth]{img/weather_est_obs} | ||
\notesonly{\captionof{figure}{Predict the next sequence of observations}} | ||
\end{center} | ||
|
||
Example: type in words $\rightarrow$ hear speech (speech synthesis) | ||
\item<only@3> Given a sequence $\{\vec x^{(t)}\}$ or $\{\vec m^{(t)}\}$ or both,\\ | ||
predict the next $\vec x$ and/or $\vec m$ | ||
|
||
\svspace{5mm} | ||
|
||
\begin{center} | ||
\includegraphics[width=0.7\textwidth]{img/weather_est_next} | ||
\notesonly{\captionof{figure}{Predict the next state and/or observation}} | ||
\end{center} | ||
|
||
\end{itemize} | ||
|
||
\notesonly{ | ||
We can achieve all the above using Hidden Markov Models (HMM) | ||
} | ||
|
||
\end{frame} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
\section{Recap: Latent variable models} | ||
|
||
\begin{frame} | ||
\mode<presentation>{ | ||
\begin{center} \huge | ||
\secname | ||
\end{center} | ||
} | ||
\begin{center} | ||
Latent variable models: an abstraction of Gaussian Mixture Models | ||
\end{center} | ||
|
||
\end{frame} | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
\begin{frame}{} | ||
|
||
\begin{center} | ||
\includegraphics[width=0.7\textwidth]{img/latentexample_gmm} | ||
\notesonly{\captionof{figure}{A Gaussian Mixture Model as a latent variable model}} | ||
\end{center} | ||
|
||
``Groups'' may exist in the data. There are \emph{hidden causes} in the observations. We need a fit that accounts for this. | ||
|
||
\end{frame} | ||
|
||
\begin{frame}{Assignment variables as latent variables} | ||
|
||
A simple way to understand what latent variables represent is to view them as assignment variables to components that we need to estimate. | ||
|
||
Example:\\ | ||
|
||
\begin{itemize} | ||
\item assignment variables: $\vec{m}^{(\alpha)} = \big( m_1^{(\alpha)}, \dots, m_M^{(\alpha)} \big)^\top \in \left\{ 0, 1 \right\}^M$ \\ | ||
\begin{align} | ||
m_q^{(\alpha)} &= | ||
\begin{cases} | ||
1, & \text{if component } q \text{ has generated point}~\alpha\\ | ||
0, & \text{otherwise} | ||
\end{cases} | ||
%\hspace{0.5cm} | ||
\;\text{with} \; | ||
\sum_{q=1}^{M} m_q^{(\alpha)} = 1 | ||
\end{align} | ||
\end{itemize} | ||
|
||
\end{frame} | ||
|
||
\begin{frame}{Gaussian Mixture Models are latent variable models} | ||
|
||
\slidesonly{ | ||
\begingroup | ||
\small | ||
\begin{itemize} | ||
\item assignment variables: $\vec{m}^{(\alpha)} = \big( m_1^{(\alpha)}, \dots, m_M^{(\alpha)} \big)^\top \in \left\{ 0, 1 \right\}^M$ \\ | ||
\begin{align} | ||
m_q^{(\alpha)} &= | ||
\begin{cases} | ||
1, & \text{if component } q \text{ has generated point}~\alpha\\ | ||
0, & \text{otherwise} | ||
\end{cases} | ||
%\hspace{0.5cm} | ||
\;\text{with} \; | ||
\sum_{q=1}^{M} m_q^{(\alpha)} = 1 | ||
\end{align} | ||
\end{itemize} | ||
\endgroup | ||
} | ||
|
||
\notesonly{We have also seen how Gaussian Mixture Models can model assignment variables using mixture components.} | ||
|
||
\begin{center} | ||
\includegraphics[width=0.7\textwidth]{img/latentexample_gmm_annot} | ||
\notesonly{\captionof{figure}{A Gaussian Mixture Model as a latent variable model with values of the assignment variables for the different groups in the data.}} | ||
\end{center} | ||
|
||
|
||
\end{frame} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
\section{Markov chains} | ||
|
||
\begin{frame} | ||
\mode<presentation>{ | ||
\begin{center} \huge | ||
\secname | ||
\end{center} | ||
} | ||
\mode<presentation>{ | ||
\begin{center} | ||
Remember them from stochastic optimization? | ||
\end{center} | ||
} | ||
\end{frame} | ||
|
||
\begin{frame}{\secname} | ||
|
||
Consider the random variables $y^{(1)}, y^{(2)}, \ldots, y^{(T-1)}, y^{(T)}$. | ||
There is \textbf{no} statistical independence between the $y$'s: | ||
\begin{equation} | ||
P(y^{(1)}, y^{(2)}, \ldots, y^{(T-1)}, y^{(T)}) \ne \prod_{t=1}^T P(y^{(t)}) | ||
\end{equation} | ||
|
||
But | ||
|
||
\begin{equation} | ||
P(y^{(t)} | y^{(t-1)}, y^{(t-2)}, \ldots, y^{(2)}, y^{(1)}) = P(y^{(t)} | y^{(t-1)}) | ||
\end{equation} | ||
|
||
$y^{(t)}$ depends only on $y^{(t-1)}$ $\rightarrow$ \emph{Markov property} | ||
|
||
A sequence of samples of these $y$'s $\rightarrow$ \emph{Markov chain} | ||
|
||
\end{frame} |
Oops, something went wrong.