Skip to content

Commit

Permalink
Merge branch 'main' into prody-signint
Browse files Browse the repository at this point in the history
  • Loading branch information
karolamik13 authored Dec 1, 2024
2 parents c159a34 + 3e3d822 commit 4a3f244
Show file tree
Hide file tree
Showing 15 changed files with 7,041 additions and 253 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/main.yml
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["2.7", "3.8", "3.9", "3.10", "3.11", "3.12"]
python-version: ["2.7", "3.9", "3.10", "3.11", "3.12"]

steps:
- uses: actions/checkout@v2
Expand Down
12 changes: 12 additions & 0 deletions prody/dynamics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,14 @@
* :class:`.AdaptiveANM` - generate transitions between two conformers using best overlapping modes
ENM-MD hybrid methods
===================
The following classes and functions can be used to generate conformers using ENM-MD hybrid methods:
* :class:`.ClustENM` - generate conformers by exploring combinations of modes and clustering, using minimisation and optionally MD
* :function:`.ANMD` - generate conformers by traversing a number of individual modes, applying minimisation to each conformer
Essential Site Scanning Analysis (ESSA)
========================================
Expand Down Expand Up @@ -367,3 +375,7 @@
from . import logistic
from .logistic import *
__all__.extend(logistic.__all__)

from . import anmd
from .anmd import *
__all__.extend(anmd.__all__)
278 changes: 278 additions & 0 deletions prody/dynamics/anmd.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,278 @@
# -*- coding: utf-8 -*-
'''
Copyright (c) 2020-2022 Burak Kaynak, Pemra Doruker.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''

__author__ = 'Anupam Banerjee'
__credits__ = ['James Krieger']
__email__ = ['[email protected]', '[email protected]']

from numbers import Number
import os

from prody import LOGGER
from prody.atomic.atomic import Atomic
from prody.ensemble.ensemble import Ensemble
from prody.proteins.pdbfile import parsePDB, writePDB

from prody.dynamics.anm import ANM
from prody.dynamics.clustenm import ClustENM
from prody.dynamics.editing import extendModel
from prody.dynamics.modeset import ModeSet
from prody.dynamics.nma import NMA
from prody.dynamics.sampling import traverseMode


__all__ = ['runANMD']

def runANMD(atoms, num_modes=2, max_rmsd=2., num_steps=2, tolerance=10.0,
**kwargs):
"""Runs the ANMD hybrid simulation method ([CM22]_), which generates conformations
along single modes using :func:`.traverseModes` and minimises them.
The first non-zero mode is scaled to *max_rmsd*
and the remaining modes are scaled accordingly using their eigenvalues.
kwargs of traverseMode can be provided: pos, neg and reverse
:arg atoms: an object with atom and coordinate data.
This should be a complete atomic model. It is ok to be missing
some side chain atoms and hydrogens, but not fragments, such as loops.
:type atoms: :class:`.Atomic`
:arg num_modes: number of modes to calculate
Default is 2
:type num_modes: int
:arg max_rmsd: maximum rmsd for non-zero mode 1
Default is 2.
:type max_rmsd: float
:arg num_steps: number of conformers in each direction for each mode
Default is 2
:type num_steps: int
:arg tolerance: tolerance for energy minimisation in OpenMM
in kilojoule/mole/nanometer. Default is 10 as in OpenMM
:type tolerance: float
:arg skip_modes: number of modes to skip
Default is 0
:type skip_modes: int
:arg anm: your own NMA modes or ModeSet to use instead
Default is None
:type anm: :class:`.NMA`, :class:`.ANM`, :class:`.ModeSet`
.. [CM22] Mary Hongying Cheng, James M Krieger, Anupam Banerjee, Yufei Xiang,
Burak Kaynak, Yi Shi, Moshe Arditi, Ivet Bahar.
Impact of new variants on SARS-CoV-2 infectivity and neutralization:
A molecular assessment of the alterations in the spike-host protein
interactions. *iScience* **2022** 25(3):103939.
"""
try:
from simtk.openmm.app import PDBFile, ForceField, \
Simulation, HBonds, NoCutoff
from simtk.openmm import LangevinIntegrator
from simtk.unit import nanometer, kelvin, picosecond, picoseconds, \
angstrom, kilojoule, mole
except ImportError:
raise ImportError('Please install PDBFixer and OpenMM to use ANMD')

if not isinstance(atoms, Atomic):
raise TypeError('atoms should be an Atomic object')

if not isinstance(num_modes, int):
raise TypeError('num_modes should be an integer')

if not isinstance(num_steps, int):
raise TypeError('num_steps should be an integer')

if not isinstance(max_rmsd, Number):
raise TypeError('max_rmsd should be a float')

if not isinstance(tolerance, Number):
raise TypeError('tolerance should be a float')
tolerance = tolerance * kilojoule/mole/nanometer

pos = kwargs.get('pos', True)
if not isinstance(pos, bool):
raise TypeError('pos should be a bool')

neg = kwargs.get('neg', True)
if not isinstance(neg, bool):
raise TypeError('neg should be a bool')

reverse = kwargs.get('reverse', False)
if not isinstance(reverse, bool):
raise TypeError('reverse should be a bool')

skip_modes = kwargs.get('skip_modes', 0)
if not isinstance(skip_modes, int):
raise TypeError('skip_modes should be an integer')

anm = kwargs.get('anm', None)
if not isinstance(anm, (type(None), NMA, ModeSet)):
raise TypeError('anm should be an NMA or ModeSet object')

pdb_name=atoms.getTitle().replace(' ', '_')

fix_name = pdb_name + '_fixed.pdb'
if os.path.exists(fix_name):
LOGGER.info('\nFixed structure found')
else:
clustenm=ClustENM()
clustenm.setAtoms(atoms)
clustenm.writePDBFixed()
pdb_fix = PDBFile(fix_name)

fixmin_name=pdb_name + '_fixedmin.pdb'
if os.path.exists(fixmin_name):
LOGGER.info('\nMinimised fixed structure found')
else:
LOGGER.info('\nMinimising fixed structure ...')
LOGGER.timeit('_anmd_min')

forcefield = ForceField("amber99sbildn.xml", "amber99_obc.xml")
system = forcefield.createSystem(pdb_fix.topology,
nonbondedMethod=NoCutoff,
nonbondedCutoff=1*nanometer,
constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond,
0.003*picoseconds)
simulation = Simulation(pdb_fix.topology, system, integrator)
simulation.context.setPositions(pdb_fix.positions)
simulation.minimizeEnergy(tolerance=tolerance)
positions = simulation.context.getState(getPositions=True).getPositions()
PDBFile.writeFile(simulation.topology, positions, open(fixmin_name, 'w'))
LOGGER.report('The fixed structure was minimised in %.2fs.\n',
label='_anmd_min')

pdb_fixed=parsePDB(fixmin_name, compressed=False)

if skip_modes >= num_modes:
LOGGER.warn('skip_modes >= num_modes so no modes are used and minimised fixed structure is returned')
return pdb_fixed

calphas=pdb_fixed.select('calpha')
if anm is None:
anm=ANM()
anm.buildHessian(calphas)
anm.calcModes(n_modes=num_modes)
anm_ex, atoms_all = extendModel(anm, calphas, pdb_fixed)
anm_ex._indices = anm.getIndices()
eval_0=anm[0].getEigval()

ensembles = []
for i in range(skip_modes, num_modes):
modeNum = anm_ex.getIndices()[i]

eval_i=anm[i].getEigval()
sc_rmsd=((1/eval_i)**0.5/(1/eval_0)**0.5)*max_rmsd
traj_aa=traverseMode(anm_ex[i], atoms_all, n_steps=num_steps, rmsd=sc_rmsd,
**kwargs)
traj_aa.setAtoms(atoms_all)

num_confs = traj_aa.numConfs()
LOGGER.info('\nMinimising {0} conformers for mode {1} ...'.format(num_confs, modeNum))

target_ensemble = Ensemble('mode {0} ensemble'.format(modeNum))
target_ensemble.setAtoms(atoms_all)
target_ensemble.setCoords(atoms_all)

for j, conf in enumerate(traj_aa):
jp1 = j+1
writePDB('temp1.pdb', conf)
pdb = PDBFile('temp1.pdb')
os.remove("temp1.pdb")

LOGGER.info('\nMinimising structure {0} along mode {1} ...'.format(jp1, modeNum))
LOGGER.timeit('_anmd_min')
forcefield = ForceField("amber99sbildn.xml", "amber99_obc.xml")
system = forcefield.createSystem(pdb.topology,
nonbondedMethod=NoCutoff,
nonbondedCutoff=1*nanometer,
constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond, \
0.003*picoseconds)
simulation = Simulation(pdb.topology, system, integrator)
simulation.context.setPositions(pdb.positions)
simulation.minimizeEnergy(tolerance=tolerance)
positions = simulation.context.getState(getPositions=True).getPositions(
asNumpy=True).value_in_unit(angstrom)[:pdb.topology.getNumAtoms()]

target_ensemble.addCoordset(positions)

LOGGER.report('The structure was minimised in %.2fs.',
label='_anmd_min')

ensembles.append(target_ensemble)

os.remove(fix_name)
os.remove(fixmin_name)

return ensembles


if __name__=='__main__':
import sys
from prody.tests.datafiles import pathDatafile

pdb_filename = sys.argv[1] if len(sys.argv) > 1 else pathDatafile('1ubi')
num_modes = int(sys.argv[2]) if len(sys.argv) > 2 else 2
max_rmsd = float(sys.argv[3]) if len(sys.argv) > 3 else 2.
tol = float(sys.argv[4]) if len(sys.argv) > 4 else 10.

num_steps = int(sys.argv[5]) if len(sys.argv) > 5 else 2
skip_modes = int(sys.argv[6]) if len(sys.argv) > 6 else 0

pos = bool(sys.argv[7]) if len(sys.argv) > 7 else True
neg = bool(sys.argv[8]) if len(sys.argv) > 8 else True
reverse = bool(sys.argv[9]) if len(sys.argv) > 9 else False

anm_filename = sys.argv[10] if len(sys.argv) > 10 else None
anm = None
if anm_filename is not None:
if anm.endswith('nmd'):
anm, _ = parseNMD(anm_filename)
elif anm.endswith('npz'):
anm = loadModel(anm_filename)
else:
raise ValueError('anm should be an nmd or npz file or None')

pdb_name_ext = pdb_filename
if pdb_name_ext.endswith('.pdb'):
pdb_filename = pdb_name_ext[:-4]
else:
pdb_name_ext += '.pdb'

pdb = parsePDB(pdb_name_ext, compressed=False)

x = runANMD(pdb, num_modes=num_modes, max_rmsd=max_rmsd,
num_steps=num_steps, skip_modes=skip_modes, tolerance=tol,
pos=pos, neg=neg, reverse=reverse,
anm=anm)

pdb_basename = os.path.basename(pdb_filename)
for ens in x:
filename = pdb_basename + '_' + ens.getTitle().replace(' ', '_')
LOGGER.info('writing PDB file {0}'.format(filename))
writePDB(filename, ens)
Loading

0 comments on commit 4a3f244

Please sign in to comment.