forked from prody/ProDy
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request prody#1849 from jamesmkrieger/logistic
Logistic regression for differences between sub-ensembles
- Loading branch information
Showing
5 changed files
with
244 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
# -*- coding: utf-8 -*- | ||
"""This module defines a class for logistic regression classification calculations.""" | ||
|
||
import time | ||
|
||
import numpy as np | ||
|
||
from prody import LOGGER | ||
from prody.atomic import Atomic | ||
from prody.ensemble import Ensemble | ||
from prody.utilities import isListLike | ||
|
||
from .nma import NMA | ||
|
||
__all__ = ['LRA'] | ||
|
||
|
||
class LRA(NMA): | ||
|
||
"""A class for logistic regression classification of conformational | ||
ensembles. See examples in :ref:`pca`.""" | ||
|
||
def __init__(self, name='Unknown'): | ||
NMA.__init__(self, name) | ||
|
||
def calcModes(self, coordsets, labels, lasso=True, **kwargs): | ||
"""Calculate logistic regression classification modes between classes. | ||
This method uses :class:`sklearn.linear_model.LogisticRegression` | ||
on coordsets with class labels. | ||
*coordsets* argument may be one of the following: | ||
* :class:`.Atomic` | ||
* :class:`.Ensemble` | ||
* :class:`.TrajBase` | ||
* :class:`numpy.ndarray` with shape ``(n_csets, n_atoms, 3)`` | ||
:arg labels: a set of labels for discriminating classes | ||
:type labels: :class:`~numpy.ndarray` | ||
:arg lasso: whether to use lasso regression (sets penalty='l1', solver='liblinear') | ||
Default **True** | ||
:type lasso: bool | ||
:arg n_shuffles: number of random shuffles of labels to assess variability | ||
:type n_shuffles: int | ||
Other kwargs for the LogisticRegression class can also be used | ||
""" | ||
try: | ||
from sklearn.linear_model import LogisticRegression | ||
except ImportError: | ||
raise ImportError("Please install sklearn to use LogisticRegression") | ||
|
||
start = time.time() | ||
self._clear() | ||
|
||
if isinstance(coordsets, np.ndarray): | ||
if (coordsets.ndim != 3 or coordsets.shape[2] != 3 or | ||
coordsets.dtype not in (np.float32, float)): | ||
raise ValueError('coordsets is not a valid coordinate array') | ||
self._coordsets = coordsets | ||
elif isinstance(coordsets, Atomic): | ||
self._coordsets = coordsets._getCoordsets() | ||
elif isinstance(coordsets, Ensemble): | ||
self._coordsets = coordsets._getCoordsets() | ||
else: | ||
raise TypeError('coordsets should be Atomic, Ensemble or numpy.ndarray, not {0}' | ||
.format(type(coordsets))) | ||
|
||
nconfs = self._coordsets.shape[0] | ||
if not isListLike(labels): | ||
raise TypeError('labels must be either a list or a numpy.ndarray, not {0}' | ||
.format(type(labels))) | ||
if not isinstance(labels, np.ndarray): | ||
labels = np.array(labels) | ||
if labels.ndim != 1 or len(labels) != nconfs: | ||
raise ValueError('labels should have same number as conformers') | ||
|
||
self._n_atoms = self._coordsets.shape[1] | ||
|
||
self._coordsets = self._coordsets.reshape(nconfs, -1) | ||
self._labels = labels | ||
|
||
quiet = kwargs.pop('quiet', False) | ||
|
||
self._n_shuffles = kwargs.pop('n_shuffles', 0) | ||
|
||
if lasso: | ||
if 'penalty' not in kwargs: | ||
kwargs['penalty'] ='l1' | ||
else: | ||
LOGGER.warn('using provided penalty kwarg instead of l1 from lasso') | ||
|
||
if 'solver' not in kwargs: | ||
kwargs['solver'] ='liblinear' | ||
else: | ||
LOGGER.warn('using provided solver kwarg instead of liblinear from lasso') | ||
|
||
self._lra = LogisticRegression(**kwargs) | ||
self._projection = self._lra.fit(self._coordsets, self._labels) | ||
self._array = self._lra.coef_.T/np.linalg.norm(self._lra.coef_) | ||
self._eigvals = np.ones(1) | ||
self._vars = np.ones(1) | ||
|
||
self._n_modes = 1 | ||
|
||
if not quiet: | ||
if self._n_modes > 1: | ||
LOGGER.debug('{0} modes were calculated in {1:.2f}s.' | ||
.format(self._n_modes, time.time()-start)) | ||
else: | ||
LOGGER.debug('{0} mode was calculated in {1:.2f}s.' | ||
.format(self._n_modes, time.time()-start)) | ||
|
||
if self._n_shuffles > 0: | ||
if self._n_modes > 1: | ||
LOGGER.debug('Calculating {0} modes for {1} shuffles.' | ||
.format(self._n_modes, self._n_shuffles)) | ||
else: | ||
LOGGER.debug('Calculating {0} mode for {1} shuffles.' | ||
.format(self._n_modes, self._n_shuffles)) | ||
|
||
self._shuffled_lras = [LRA('shuffle '+str(n)) for n in range(self._n_shuffles)] | ||
self._coordsets_reshaped = self._coordsets.reshape(self._coordsets.shape[0], self._n_atoms, -1) | ||
|
||
n = 0 | ||
while n < self._n_shuffles: | ||
labelsNew = self._labels.copy() | ||
# use random generator with None, | ||
# then fresh, unpredictable entropy will be pulled from the OS | ||
rng = np.random.default_rng() | ||
rng.shuffle(labelsNew) # in place | ||
|
||
self._shuffled_lras[n].calcModes(self._coordsets_reshaped, | ||
labelsNew, quiet=True) | ||
|
||
if np.allclose(abs(np.dot(self._shuffled_lras[n].getEigvecs()[0], | ||
self.getEigvecs()[0])), | ||
1): | ||
# LDA has flipped direction as labels match or are exactly flipped | ||
continue | ||
|
||
n += 1 | ||
|
||
if self._n_shuffles > 0 and not quiet: | ||
if self._n_modes > 1: | ||
LOGGER.debug('{0} modes were calculated with {1} shuffles in {2:.2f}s.' | ||
.format(self._n_modes, self._n_shuffles, time.time()-start)) | ||
else: | ||
LOGGER.debug('{0} mode was calculated with {1} shuffles in {2:.2f}s.' | ||
.format(self._n_modes, self._n_shuffles, time.time()-start)) | ||
|
||
def addEigenpair(self, eigenvector, eigenvalue=None): | ||
"""Add eigen *vector* and eigen *value* pair(s) to the instance. | ||
If eigen *value* is omitted, it will be set to 1. Eigenvalues | ||
are set as variances.""" | ||
|
||
NMA.addEigenpair(self, eigenvector, eigenvalue) | ||
self._vars = self._eigvals | ||
|
||
def setEigens(self, vectors, values=None): | ||
"""Set eigen *vectors* and eigen *values*. If eigen *values* are | ||
omitted, they will be set to 1. Eigenvalues are set as variances.""" | ||
|
||
self._clear() | ||
NMA.setEigens(self, vectors, values) | ||
self._vars = self._eigvals | ||
|
||
def getShuffledModes(self): | ||
return self._shuffled_lras.copy() | ||
|
||
def getShuffledEigvecs(self): | ||
return np.array([lda.getEigvecs() for lda in self._shuffled_lras]) | ||
|
||
def getShuffledPercentile(self, percentile, take_abs=True): | ||
shuffles = self.getShuffledEigvecs() | ||
if take_abs: | ||
shuffles = abs(shuffles) | ||
return np.percentile(shuffles, percentile) |
Oops, something went wrong.