cbt -i input_file -o output_file -c
-i = input, required
-o = output, required
-c = compression
-d = decompression
-t = output type, either csv or tsv
--override = to override output file if it exist
# Returns numpy array of file as uncompressed, useful for ML (same as load as pandas df, and to_numpy())
cbt_to_array(compressed_file)
# Returns numpy array of name of the mutations as uncompressed, useful for ML, (same as load pandas df and use df.colums)
cbt_columns(compressed_file)
strain_name,mut1,mut2,mut3,mut4,outcome
strain1,0,1,1,1,1,1
strain2,0,0,1,1,1,0
strain3,0,1,0,1,1,0
strain4,1,1,1,1,1,1
strain_name mut1 mut2 mut3 mut4 outcome
strain1 0 1 1 1 1 1
strain2 0 0 1 1 1 0
strain3 0 1 0 1 1 0
strain4 1 1 1 1 1 1
1;mut1;mut2;mut3;mut4;outcome
strain1;6;43;87;102
strain2;16;43;87;102
strain3;6;53;78;112
strain4;61;413;824;942