Skip to content

kaleidos/skame

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Skame Schema validation system

Build Status Coveralls Status

Modular pythonic library for validating python objects such as dicts, strings and the like. It's built on top of well-defined, easy-to-use, reusable components.

Table of Contents

Motivation

This library comes from the frustration with schema library due to its validation design rule

Features

  • Built on top of a common protocol: callable which lets you base your validation rules on predicates that can be easily reused.
  • Map validator validates all data at once and returns the errors grouped by fieldname.
  • Map validator lets you define fields that depend on other fields.

Validators

A validator is any class that inherits from skame.base.Schema which enforces the implementation of a validate method.

Base validators

These are the most basic validators that are available and they validate one value at a time. They can and should be combined to create more complex validators if the one you're looking for is not included yet in the library.

Predicate

This the keystone of the validation system. Its philosophy is: give a predicate function and I'll hook it in the validation system.

Signature: Predicate(<callable>[, message=<message>]).validate(<data>)

Returns: <data> if <callable>(<data>) returns True. Raises SchemaError(<message>) otherwise.

Example:

import os
import pytest
from skame.schemas.base import Predicate

assert Predicate(os.path.exists).validate("./") == "./"
assert Predicate(lambda n: n > 0).validate(123) == 123
with pytest.raises(SchemaError):
    Predicate(lambda n: n > 0).validate(-123)

Type

This is a specific kind of predicate that checks if the data is an instance of the specified type.

Signature: Type(<type>[, message=<message>]).validate(<data>)

Returns: <data> if isinstance(<data>, <type>) returns True. Raises SchemaError(<message>) otherwise.

Example:

import pytest
from skame.schemas.base import Type

assert Type(object).validate("hai") == "hai"
assert Type(int).validate(123) == 123
with pytest.raises(SchemaError):
    Type(int).validate("123")

Is

This is a specific kind of predicate that checks if the data is the same specified object.

Signature: Is(<obj>[, message=<message>]).validate(<data>)

Returns: <data> if <data> is <obj> returns True. Raises SchemaError(<message>) otherwise.

Example:

import pytest
from skame.schemas.base import Is

assert Is("hai").validate("hai") == "hai"
assert Is(123).validate(123) == 123

singleton = object()
assert Is(singleton).validate(singleton) == singleton

with pytest.raises(SchemaError):
    Is(singleton).validate(object())

Pipe

This is a specific kind of predicate that checks if the data can travel through a pipe without causing an error.

Signature: Pipe(<callable>[, *<callable>, message=<message>]).validate(<data>)

Returns: <callable>(<data>) if callable(<data>) raises no exception. Raises SchemaError(<message>) otherwise.

Example:

import pytest
from skame.schemas.base import Pipe

assert Pipe(int).validate("123") == 123
assert Pipe(int, str).validate(123.0) == "123"
assert Pipe(int, str, lambda _: (42,)).validate(123.0) == (42,)
with pytest.raises(SchemaError):
    Pipe(int).validate(None)

Combinators

In order to combine simple validators we use combinators.

And

This combinator runs all specified validators in order and succeeds if all validators succeed.

Signature: And(<validator>[, <validator>...]).validate(<data>)

Returns: The value returned by the last validator if <validator>(<data>) is successful for each validator. Raises SchemaError or SchemaErrors depending on the validator that failed.

Example:

import pytest
from skame.schemas.base import And, Pipe, Predicate, Is

assert And(Pipe(int), Predicate(lambda n: n == 42)).validate("42") == 42

with pytest.raises(SchemaError):
    And(Pipe(str), Is(42)).validate("20")

Or

This combinator runs all specified validators in order and succeeds if any validator succeeds.

Signature: Or(<validator>[, <validator>...]).validate(<data>)

Returns: The value returned by the last validator if <validator>(<data>) is successful for any validator. Raises SchemaError or SchemaErrors depending on the validator that failed.

Example:

import pytest
from skame.schemas.base import Or, Pipe, Predicate, Is

assert Or(b.Type(str), b.Predicate(lambda n: n == 42)).validate("20") == "20"
assert Or(b.Type(str), b.Predicate(lambda n: n == 42)).validate(42) == 42
with pytest.raises(SchemaError):
    Or(b.Type(str), b.Predicate(lambda n: n == 42)).validate(20)

Map

This combinator maps validators to names, runs all validators (without any specific order) and succeeds if all validators succeed.

Signature: Map({ <name>: <validator> }).validate(<data>)

Note: <data> must be a dict or dict-like object.

Returns: The value returned by the last validator if <validator>(<data>) is successful for any validator. Raises SchemaErrors where the message is a dict with the form { <name>: <error msg>}.

Example:

import pytest
from skame.schemas.base import Map, Pipe, Predicate

schema = Map({
    "name": Predicate(lambda name: 0 < len(name) < 25)
})
assert schema.validate({"name": "First name", "age": "28"}) == {"name": "First name"}

schema = Map({
    "name": And(Predicate(lambda name: 0 < len(name) < 25), Pipe(len))
})
assert schema.validate({"name": "First name", "age": "28"}) == {"name": 10}


with pytest.raises(SchemaErrors):
    schema.validate({"name": ""})
Marking fields as optional

In the map validator you can mark fields as optional, that is, they are validated only if present and not required, for example:

assert Map({"name": Pipe(str), "age": Pipe(int)}).required == {"name", "age"}
assert Map({"name": Pipe(str), Optional("age"): Pipe(int)}).required == {"name"}

validator = Map({"name": Type(str), Optional("age"): Type(int)})
assert validator.validate({"name": "John"}) == {"name": "John"}
with pytest.raises(SchemaErrors):
    validator.validate({"name": "John", "age": 1.2})  # age must be an int
Marking fields as dependent

In the map validator you can mark fields as dependent on others fields already validated, for example:

def uk_postalcode_or_none(data):
    if data.get("country") == "GBR":
        validator = is_uk_postalcode
    else:
        validator = is_none
    return validator.validate(data.get("postalcode", ""))


LivelocationValidator = Map({
    "country": And(Type(str), Predicate(lambda x: len(x) == 3)),
    Dependent("postalcode"): Pipe(uk_postalcode_or_none)
})

About

Skame Schema Validation System

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published