-
Notifications
You must be signed in to change notification settings - Fork 445
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0bcf93f
commit 9cbb278
Showing
3 changed files
with
136 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
# File description | ||
|
||
- [./http_server.py](./http_server.py) It defines which files to server. | ||
Files are saved in [./web](./web). | ||
- [non_streaming_server.py](./non_streaming_server.py) WebSocket server for | ||
non-streaming models. | ||
- [vad-remove-non-speech-segments.py](./vad-remove-non-speech-segments.py) It uses | ||
[silero-vad](https://github.com/snakers4/silero-vad) to remove non-speech | ||
segments and concatenate all speech segments into a single one. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
#!/usr/bin/env python3 | ||
|
||
""" | ||
This file shows how to remove non-speech segments | ||
and merge all speech segments in to a large segment | ||
and save it to a file. | ||
Usage | ||
python3 ./vad-remove-non-speech-segments.py \ | ||
--silero-vad-model silero_vad.onnx | ||
Please visit | ||
https://github.com/snakers4/silero-vad/blob/master/files/silero_vad.onnx | ||
to download silero_vad.onnx | ||
For instance, | ||
wget https://github.com/snakers4/silero-vad/raw/master/files/silero_vad.onnx | ||
""" | ||
|
||
import argparse | ||
import time | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import sherpa_onnx | ||
import soundfile as sf | ||
|
||
try: | ||
import sounddevice as sd | ||
except ImportError: | ||
print("Please install sounddevice first. You can use") | ||
print() | ||
print(" pip install sounddevice") | ||
print() | ||
print("to install it") | ||
sys.exit(-1) | ||
|
||
|
||
def assert_file_exists(filename: str): | ||
assert Path(filename).is_file(), ( | ||
f"{filename} does not exist!\n" | ||
"Please refer to " | ||
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it" | ||
) | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser( | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
) | ||
|
||
parser.add_argument( | ||
"--silero-vad-model", | ||
type=str, | ||
required=True, | ||
help="Path to silero_vad.onnx", | ||
) | ||
|
||
return parser.parse_args() | ||
|
||
|
||
def main(): | ||
devices = sd.query_devices() | ||
if len(devices) == 0: | ||
print("No microphone devices found") | ||
sys.exit(0) | ||
|
||
print(devices) | ||
default_input_device_idx = sd.default.device[0] | ||
print(f'Use default device: {devices[default_input_device_idx]["name"]}') | ||
|
||
args = get_args() | ||
assert_file_exists(args.silero_vad_model) | ||
|
||
sample_rate = 16000 | ||
samples_per_read = int(0.1 * sample_rate) # 0.1 second = 100 ms | ||
|
||
config = sherpa_onnx.VadModelConfig() | ||
config.silero_vad.model = args.silero_vad_model | ||
config.sample_rate = sample_rate | ||
|
||
window_size = config.silero_vad.window_size | ||
|
||
buffer = [] | ||
vad = sherpa_onnx.VoiceActivityDetector(config, buffer_size_in_seconds=30) | ||
|
||
all_samples = [] | ||
|
||
print("Started! Please speak") | ||
|
||
try: | ||
with sd.InputStream(channels=1, dtype="float32", samplerate=sample_rate) as s: | ||
while True: | ||
samples, _ = s.read(samples_per_read) # a blocking read | ||
samples = samples.reshape(-1) | ||
buffer = np.concatenate([buffer, samples]) | ||
|
||
all_samples = np.concatenate([all_samples, samples]) | ||
|
||
while len(buffer) > window_size: | ||
vad.accept_waveform(buffer[:window_size]) | ||
buffer = buffer[window_size:] | ||
except KeyboardInterrupt: | ||
print("\nCaught Ctrl + C. Saving & Exiting") | ||
|
||
speech_samples = [] | ||
while not vad.empty(): | ||
speech_samples.extend(vad.front.samples) | ||
vad.pop() | ||
|
||
speech_samples = np.array(speech_samples, dtype=np.float32) | ||
|
||
filename_for_speech = time.strftime("%Y%m%d-%H%M%S-speech.wav") | ||
sf.write(filename_for_speech, speech_samples, samplerate=sample_rate) | ||
|
||
filename_for_all = time.strftime("%Y%m%d-%H%M%S-all.wav") | ||
sf.write(filename_for_all, all_samples, samplerate=sample_rate) | ||
|
||
print(f"Saved to {filename_for_speech} and {filename_for_all}") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters