-
Notifications
You must be signed in to change notification settings - Fork 508
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2bb7d7e
commit 44f8d8c
Showing
5 changed files
with
220 additions
and
5 deletions.
There are no files selected for viewing
201 changes: 201 additions & 0 deletions
201
sherpa-onnx/csrc/online-recognizer-transducer-nemo-impl.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,201 @@ | ||
// sherpa-onnx/csrc/online-recognizer-transducer-nemo-impl.h | ||
// | ||
// Copyright (c) 2022-2024 Xiaomi Corporation | ||
|
||
#ifndef SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_TRANSDUCER_NEMO_IMPL_H_ | ||
#define SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_TRANSDUCER_NEMO_IMPL_H_ | ||
|
||
#include <fstream> | ||
#include <ios> | ||
#include <memory> | ||
#include <regex> // NOLINT | ||
#include <sstream> | ||
#include <string> | ||
#include <utility> | ||
#include <vector> | ||
|
||
#if __ANDROID_API__ >= 9 | ||
#include "android/asset_manager.h" | ||
#include "android/asset_manager_jni.h" | ||
#endif | ||
|
||
#include "sherpa-onnx/csrc/macros.h" | ||
#include "sherpa-onnx/csrc/online-recognizer-impl.h" | ||
#include "sherpa-onnx/csrc/online-recognizer.h" | ||
#include "sherpa-onnx/csrc/online-transducer-greedy-search-nemo-decoder.h" | ||
#include "sherpa-onnx/csrc/online-transducer-nemo-model.h" | ||
#include "sherpa-onnx/csrc/pad-sequence.h" | ||
#include "sherpa-onnx/csrc/symbol-table.h" | ||
#include "sherpa-onnx/csrc/transpose.h" | ||
#include "sherpa-onnx/csrc/utils.h" | ||
|
||
namespace sherpa_onnx { | ||
|
||
// defined in ./online-recognizer-transducer-impl.h | ||
OnlineRecognizerResult Convert(const OnlineTransducerDecoderResult &src, | ||
const SymbolTable &sym_table, | ||
float frame_shift_ms, | ||
int32_t subsampling_factor, | ||
int32_t segment, | ||
int32_t frames_since_start); | ||
|
||
class OnlineRecognizerTransducerNeMoImpl : public OnlineRecognizerImpl { | ||
public: | ||
explicit OnlineRecognizerTransducerNeMoImpl( | ||
const OnlineRecognizerConfig &config) | ||
: config_(config), | ||
symbol_table_(config_.model_config.tokens), | ||
model_(std::make_unique<OnlineTransducerNeMoModel>( | ||
config_.model_config)) { | ||
if (config_.decoding_method == "greedy_search") { | ||
decoder_ = std::make_unique<OnlineTransducerGreedySearchNeMoDecoder>( | ||
model_.get(), config_.blank_penalty); | ||
} else { | ||
SHERPA_ONNX_LOGE("Unsupported decoding method: %s", | ||
config_.decoding_method.c_str()); | ||
exit(-1); | ||
} | ||
PostInit(); | ||
} | ||
|
||
#if __ANDROID_API__ >= 9 | ||
explicit OnlineRecognizerTransducerNeMoImpl( | ||
AAssetManager *mgr, const OnlineRecognizerConfig &config) | ||
: config_(config), | ||
symbol_table_(mgr, config_.model_config.tokens), | ||
model_(std::make_unique<OnlineTransducerNeMoModel>( | ||
mgr, config_.model_config)) { | ||
if (config_.decoding_method == "greedy_search") { | ||
decoder_ = std::make_unique<OnlineTransducerGreedySearchNeMoDecoder>( | ||
model_.get(), config_.blank_penalty); | ||
} else { | ||
SHERPA_ONNX_LOGE("Unsupported decoding method: %s", | ||
config_.decoding_method.c_str()); | ||
exit(-1); | ||
} | ||
|
||
PostInit(); | ||
} | ||
#endif | ||
|
||
std::unique_ptr<OnlineStream> CreateStream() const override { | ||
auto stream = std::make_unique<OnlineStream>(config_.feat_config); | ||
InitOnlineStream(stream.get()); | ||
return stream; | ||
} | ||
|
||
void DecodeStreams(OnlineStream **ss, int32_t n) const override { | ||
int32_t chunk_size = model_->ChunkSize(); | ||
int32_t chunk_shift = model_->ChunkShift(); | ||
|
||
int32_t feature_dim = ss[0]->FeatureDim(); | ||
|
||
std::vector<OnlineTransducerDecoderResult> results(n); | ||
std::vector<float> features_vec(n * chunk_size * feature_dim); | ||
std::vector<std::vector<Ort::Value>> states_vec(n); | ||
std::vector<int64_t> all_processed_frames(n); | ||
|
||
for (int32_t i = 0; i != n; ++i) { | ||
const auto num_processed_frames = ss[i]->GetNumProcessedFrames(); | ||
std::vector<float> features = | ||
ss[i]->GetFrames(num_processed_frames, chunk_size); | ||
|
||
// Question: should num_processed_frames include chunk_shift? | ||
ss[i]->GetNumProcessedFrames() += chunk_shift; | ||
|
||
std::copy(features.begin(), features.end(), | ||
features_vec.data() + i * chunk_size * feature_dim); | ||
|
||
results[i] = std::move(ss[i]->GetResult()); | ||
states_vec[i] = std::move(ss[i]->GetStates()); | ||
all_processed_frames[i] = num_processed_frames; | ||
} | ||
|
||
auto memory_info = | ||
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault); | ||
|
||
std::array<int64_t, 3> x_shape{n, chunk_size, feature_dim}; | ||
|
||
Ort::Value x = Ort::Value::CreateTensor(memory_info, features_vec.data(), | ||
features_vec.size(), x_shape.data(), | ||
x_shape.size()); | ||
|
||
std::array<int64_t, 1> processed_frames_shape{ | ||
static_cast<int64_t>(all_processed_frames.size())}; | ||
|
||
Ort::Value processed_frames = Ort::Value::CreateTensor( | ||
memory_info, all_processed_frames.data(), all_processed_frames.size(), | ||
processed_frames_shape.data(), processed_frames_shape.size()); | ||
|
||
auto states = model_->StackStates(states_vec); | ||
|
||
auto [t, ns] = model_->RunEncoder(std::move(x), std::move(states), | ||
std::move(processed_frames)); | ||
|
||
Ort::Value encoder_out = Transpose12(model_->Allocator(), &t[0]); | ||
|
||
// defined in online-transducer-greedy-search-nemo-decoder.h | ||
auto results = decoder_-> Decode(std::move(encoder_out), std::move(t[1])); | ||
|
||
std::vector<std::vector<Ort::Value>> next_states = | ||
model_->UnStackStates(ns); | ||
|
||
for (int32_t i = 0; i != n; ++i) { | ||
ss[i]->SetResult(results[i]); | ||
ss[i]->SetNeMoDecoderStates(std::move(next_states[i])); | ||
} | ||
} | ||
|
||
void InitOnlineStream(OnlineStream *stream) const { | ||
auto r = decoder_->GetEmptyResult(); | ||
|
||
stream->SetResult(r); | ||
stream->SetNeMoDecoderStates(model_->GetDecoderInitStates(batch_size_)); | ||
} | ||
|
||
private: | ||
void PostInit() { | ||
config_.feat_config.nemo_normalize_type = | ||
model_->FeatureNormalizationMethod(); | ||
|
||
config_.feat_config.low_freq = 0; | ||
// config_.feat_config.high_freq = 8000; | ||
config_.feat_config.is_librosa = true; | ||
config_.feat_config.remove_dc_offset = false; | ||
// config_.feat_config.window_type = "hann"; | ||
config_.feat_config.dither = 0; | ||
config_.feat_config.nemo_normalize_type = | ||
model_->FeatureNormalizationMethod(); | ||
|
||
int32_t vocab_size = model_->VocabSize(); | ||
|
||
// check the blank ID | ||
if (!symbol_table_.Contains("<blk>")) { | ||
SHERPA_ONNX_LOGE("tokens.txt does not include the blank token <blk>"); | ||
exit(-1); | ||
} | ||
|
||
if (symbol_table_["<blk>"] != vocab_size - 1) { | ||
SHERPA_ONNX_LOGE("<blk> is not the last token!"); | ||
exit(-1); | ||
} | ||
|
||
if (symbol_table_.NumSymbols() != vocab_size) { | ||
SHERPA_ONNX_LOGE("number of lines in tokens.txt %d != %d (vocab_size)", | ||
symbol_table_.NumSymbols(), vocab_size); | ||
exit(-1); | ||
} | ||
} | ||
|
||
private: | ||
OnlineRecognizerConfig config_; | ||
SymbolTable symbol_table_; | ||
std::unique_ptr<OnlineTransducerNeMoModel> model_; | ||
std::unique_ptr<OnlineTransducerDecoder> decoder_; | ||
|
||
int32_t batch_size_ = 1; | ||
}; | ||
|
||
} // namespace sherpa_onnx | ||
|
||
#endif // SHERPA_ONNX_CSRC_ONLINE_RECOGNIZER_TRANSDUCER_NEMO_IMPL_H_ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters