Skip to content

Commit

Permalink
Add script to convert vits models (#355)
Browse files Browse the repository at this point in the history
  • Loading branch information
csukuangfj authored Oct 12, 2023
1 parent 98b67ad commit 32da5ec
Show file tree
Hide file tree
Showing 4 changed files with 307 additions and 0 deletions.
93 changes: 93 additions & 0 deletions .github/workflows/export-vits-ljspeech-to-onnx.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
name: export-vits-ljspeech-to-onnx

on:
push:
branches:
- master
paths:
- 'scripts/vits/**'
- '.github/workflows/export-vits-ljspeech-to-onnx.yaml'
pull_request:
paths:
- 'scripts/vits/**'
- '.github/workflows/export-vits-ljspeech-to-onnx.yaml'

workflow_dispatch:

concurrency:
group: export-vits-ljspeech-${{ github.ref }}
cancel-in-progress: true

jobs:
export-vits-ljspeech-onnx:
if: github.repository_owner == 'k2-fsa' || github.repository_owner == 'csukuangfj'
name: vits ljspeech
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest]
torch: ["1.13.0"]

steps:
- uses: actions/checkout@v4

- name: Install dependencies
shell: bash
run: |
python3 -m pip install -qq torch==${{ matrix.torch }}+cpu -f https://download.pytorch.org/whl/torch_stable.html numpy
python3 -m pip install onnxruntime onnx soundfile
python3 -m pip install scipy cython unidecode phonemizer
# required by phonemizer
# See https://bootphon.github.io/phonemizer/install.html
# To fix the following error: RuntimeError: espeak not installed on your system
#
sudo apt-get install festival espeak-ng mbrola
- name: export vits ljspeech
shell: bash
run: |
cd scripts/vits
echo "Downloading vits"
git clone https://github.com/jaywalnut310/vits
pushd vits/monotonic_align
python3 setup.py build
ls -lh build/
ls -lh build/lib*/
ls -lh build/lib*/*/
cp build/lib*/monotonic_align/core*.so .
sed -i.bak s/.monotonic_align.core/.core/g ./__init__.py
git diff
popd
export PYTHONPATH=$PWD/vits:$PYTHONPATH
echo "Download models"
wget -qq https://huggingface.co/csukuangfj/vits-ljs/resolve/main/pretrained_ljs.pth
wget -qq https://huggingface.co/csukuangfj/vits-ljs/resolve/main/lexicon.txt
wget -qq https://huggingface.co/csukuangfj/vits-ljs/resolve/main/tokens.txt
wget -qq https://huggingface.co/csukuangfj/vits-ljs/resolve/main/test.py
python3 ./export-onnx-ljs.py --config vits/configs/ljs_base.json --checkpoint ./pretrained_ljs.pth
python3 ./test.py
ls -lh *.wav
- uses: actions/upload-artifact@v3
with:
name: test-0.wav
path: scripts/vits/test-0.wav

- uses: actions/upload-artifact@v3
with:
name: test-1.wav
path: scripts/vits/test-1.wav

- uses: actions/upload-artifact@v3
with:
name: test-2.wav
path: scripts/vits/test-2.wav
1 change: 1 addition & 0 deletions scripts/vits/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
tokens-ljs.txt
Empty file added scripts/vits/__init__.py
Empty file.
213 changes: 213 additions & 0 deletions scripts/vits/export-onnx-ljs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)

"""
This script converts vits models trained using the LJ Speech dataset.
Usage:
(1) Download vits
cd /Users/fangjun/open-source
git clone https://github.com/jaywalnut310/vits
(2) Download pre-trained models from
https://huggingface.co/csukuangfj/vits-ljs/tree/main
wget https://huggingface.co/csukuangfj/vits-ljs/resolve/main/pretrained_ljs.pth
(3) Run this file
./export-onnx-ljs.py \
--config ~/open-source//vits/configs/ljs_base.json \
--checkpoint ~/open-source/icefall-models/vits-ljs/pretrained_ljs.pth
It will generate the following two files:
$ ls -lh *.onnx
-rw-r--r-- 1 fangjun staff 36M Oct 10 20:48 vits-ljs.int8.onnx
-rw-r--r-- 1 fangjun staff 109M Oct 10 20:48 vits-ljs.onnx
"""
import sys

# Please change this line to point to the vits directory.
# You can download vits from
# https://github.com/jaywalnut310/vits
sys.path.insert(0, "/Users/fangjun/open-source/vits") # noqa

import argparse
from pathlib import Path
from typing import Dict, Any

import commons
import onnx
import torch
import utils
from models import SynthesizerTrn
from onnxruntime.quantization import QuantType, quantize_dynamic
from text import text_to_sequence
from text.symbols import symbols
from text.symbols import _punctuation


def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
type=str,
required=True,
help="""Path to ljs_base.json.
You can find it at
https://huggingface.co/csukuangfj/vits-ljs/resolve/main/ljs_base.json
""",
)

parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="""Path to the checkpoint file.
You can find it at
https://huggingface.co/csukuangfj/vits-ljs/resolve/main/pretrained_ljs.pth
""",
)

return parser.parse_args()


class OnnxModel(torch.nn.Module):
def __init__(self, model: SynthesizerTrn):
super().__init__()
self.model = model

def forward(
self,
x,
x_lengths,
noise_scale=1,
length_scale=1,
noise_scale_w=1.0,
sid=None,
max_len=None,
):
return self.model.infer(
x=x,
x_lengths=x_lengths,
sid=sid,
noise_scale=noise_scale,
length_scale=length_scale,
noise_scale_w=noise_scale_w,
max_len=max_len,
)[0]


def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm


def check_args(args):
assert Path(args.config).is_file(), args.config
assert Path(args.checkpoint).is_file(), args.checkpoint


def add_meta_data(filename: str, meta_data: Dict[str, Any]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)

onnx.save(model, filename)


def generate_tokens():
with open("tokens-ljs.txt", "w", encoding="utf-8") as f:
for i, s in enumerate(symbols):
f.write(f"{s} {i}\n")
print("Generated tokens-ljs.txt")


@torch.no_grad()
def main():
args = get_args()
check_args(args)

generate_tokens()

hps = utils.get_hparams_from_file(args.config)

net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model,
)
_ = net_g.eval()

_ = utils.load_checkpoint(args.checkpoint, net_g, None)

x = get_text("Liliana is the most beautiful assistant", hps)
x = x.unsqueeze(0)

x_length = torch.tensor([x.shape[1]], dtype=torch.int64)
noise_scale = torch.tensor([1], dtype=torch.float32)
length_scale = torch.tensor([1], dtype=torch.float32)
noise_scale_w = torch.tensor([1], dtype=torch.float32)

model = OnnxModel(net_g)

opset_version = 13

filename = "vits-ljs.onnx"

torch.onnx.export(
model,
(x, x_length, noise_scale, length_scale, noise_scale_w),
filename,
opset_version=opset_version,
input_names=["x", "x_length", "noise_scale", "length_scale", "noise_scale_w"],
output_names=["y"],
dynamic_axes={
"x": {0: "N", 1: "L"}, # n_audio is also known as batch_size
"x_length": {0: "N"},
"y": {0: "N", 2: "L"},
},
)
meta_data = {
"model_type": "vits",
"comment": "ljspeech",
"language": "English",
"add_blank": int(hps.data.add_blank),
"sample_rate": hps.data.sampling_rate,
"punctuation": " ".join(list(_punctuation)),
}
print("meta_data", meta_data)
add_meta_data(filename=filename, meta_data=meta_data)

print("Generate int8 quantization models")

filename_int8 = "vits-ljs.int8.onnx"
quantize_dynamic(
model_input=filename,
model_output=filename_int8,
weight_type=QuantType.QUInt8,
)

print(f"Saved to {filename} and {filename_int8}")


if __name__ == "__main__":
main()

0 comments on commit 32da5ec

Please sign in to comment.