Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

performed end to end testing to the VALL-E recipe #1818

Merged
merged 7 commits into from
Dec 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -516,9 +516,19 @@ def main():
for idx, part in enumerate(cut_sets):
if args.audio_extractor:
if args.audio_extractor == "Encodec":
storage_path = f"{args.output_dir}/{args.prefix}_encodec_{partition}_{idx if split > 1 else ''}"
if split > 1:
storage_path = f"{args.output_dir}/{args.prefix}_encodec_{partition}_{idx}"
else:
storage_path = (
f"{args.output_dir}/{args.prefix}_encodec_{partition}"
)
else:
storage_path = f"{args.output_dir}/{args.prefix}_fbank_{partition}_{idx if split > 1 else ''}"
if split > 1:
storage_path = f"{args.output_dir}/{args.prefix}_fbank_{partition}_{idx}"
else:
storage_path = (
f"{args.output_dir}/{args.prefix}_fbank_{partition}"
)

if args.prefix.lower() in [
"ljspeech",
Expand Down Expand Up @@ -587,9 +597,11 @@ def main():
].normalized_text, "normalized_text is None"

# Save each part with an index if split > 1
cuts_filename = (
f"{prefix}cuts_{partition}.{idx if split > 1 else ''}.{args.suffix}"
)
if split > 1:
cuts_filename = f"{prefix}cuts_{partition}.{idx}.{args.suffix}"
else:
cuts_filename = f"{prefix}cuts_{partition}.{args.suffix}"

part.to_file(f"{args.output_dir}/{cuts_filename}")
logging.info(f"Saved {cuts_filename}")

Expand Down
2 changes: 1 addition & 1 deletion egs/wenetspeech4tts/TTS/valle/infer.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ def get_args():
parser.add_argument(
"--checkpoint",
type=str,
default="exp/vallf_nano_full/checkpoint-100000.pt",
default="./valle/exp/checkpoint-100000.pt",
help="Path to the saved checkpoint.",
)

Expand Down
2 changes: 2 additions & 0 deletions egs/wenetspeech4tts/TTS/valle/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
phonemizer==3.2.1
git+https://github.com/facebookresearch/encodec.git
9 changes: 4 additions & 5 deletions egs/wenetspeech4tts/TTS/valle/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
# Mingshuang Luo)
# Copyright 2023 (authors: Feiteng Li)
# Copyright 2024 (authors: Yuekai Zhang)
# Copyright 2024 Tsinghua University (authors: Zengrui Jin,)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
Expand Down Expand Up @@ -48,10 +49,8 @@
import argparse
import copy
import logging
import os
import random
import warnings
from contextlib import nullcontext
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, Optional, Tuple, Union
Expand Down Expand Up @@ -216,7 +215,7 @@ def get_parser():
parser.add_argument(
"--exp-dir",
type=str,
default="exp/valle_dev",
default="./valle/exp",
help="""The experiment dir.
It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
Expand Down Expand Up @@ -686,9 +685,9 @@ def compute_validation_loss(
output_dir = Path(f"{params.exp_dir}/eval/step-{params.batch_idx_train:06d}")
output_dir.mkdir(parents=True, exist_ok=True)
if isinstance(model, DDP):
model.module.visualize(predicts, batch, output_dir=output_dir)
model.module.visualize(predicts, batch, tokenizer, output_dir=output_dir)
else:
model.visualize(predicts, batch, output_dir=output_dir)
model.visualize(predicts, batch, tokenizer, output_dir=output_dir)

return tot_loss

Expand Down
85 changes: 85 additions & 0 deletions egs/wenetspeech4tts/TTS/valle/valle.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,11 @@
from functools import partial
from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple, Union

import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from tokenizer import TextTokenCollater
from torch import Tensor
from torch.nn import Linear, Module
from torch.nn import functional as F
Expand Down Expand Up @@ -1658,6 +1661,88 @@ def continual(
assert len(codes) == 8
return torch.stack(codes, dim=-1)

def visualize(
self,
predicts: Tuple[torch.Tensor],
batch: Dict[str, Union[List, torch.Tensor]],
tokenizer: TextTokenCollater,
output_dir: str,
limit: int = 4,
) -> None:
audio_features = batch["features"].to("cpu").detach().numpy()
audio_features_lens = batch["features_lens"].to("cpu").detach().numpy()

tokens = batch["tokens"]
text_tokens, text_tokens_lens = tokenizer(tokens)
assert text_tokens.ndim == 2

texts = batch["text"]
utt_ids = [cut.id for cut in batch["cut"]]

encoder_outputs = predicts[0].to("cpu").type(torch.float32).detach().numpy()
decoder_outputs = predicts[1]
if isinstance(decoder_outputs, list):
decoder_outputs = decoder_outputs[-1]
decoder_outputs = decoder_outputs.to("cpu").type(torch.float32).detach().numpy()

vmin, vmax = 0, 1024 # Encodec
if decoder_outputs.dtype == np.float32:
vmin, vmax = -6, 0 # Fbank

num_figures = 3
for b, (utt_id, text) in enumerate(zip(utt_ids[:limit], texts[:limit])):
_ = plt.figure(figsize=(14, 8 * num_figures))

S = text_tokens_lens[b]
T = audio_features_lens[b]

# encoder
plt.subplot(num_figures, 1, 1)
plt.title(f"Text: {text}")
plt.imshow(
X=np.transpose(encoder_outputs[b]),
cmap=plt.get_cmap("jet"),
aspect="auto",
interpolation="nearest",
)
plt.gca().invert_yaxis()
plt.axvline(x=S - 0.4, linewidth=2, color="r")
plt.xlabel("Encoder Output")
plt.colorbar()

# decoder
plt.subplot(num_figures, 1, 2)
plt.imshow(
X=np.transpose(decoder_outputs[b]),
cmap=plt.get_cmap("jet"),
aspect="auto",
interpolation="nearest",
vmin=vmin,
vmax=vmax,
)
plt.gca().invert_yaxis()
plt.axvline(x=T - 0.4, linewidth=2, color="r")
plt.xlabel("Decoder Output")
plt.colorbar()

# target
plt.subplot(num_figures, 1, 3)
plt.imshow(
X=np.transpose(audio_features[b]),
cmap=plt.get_cmap("jet"),
aspect="auto",
interpolation="nearest",
vmin=vmin,
vmax=vmax,
)
plt.gca().invert_yaxis()
plt.axvline(x=T - 0.4, linewidth=2, color="r")
plt.xlabel("Decoder Target")
plt.colorbar()

plt.savefig(f"{output_dir}/{utt_id}.png")
plt.close()


# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
def top_k_top_p_filtering(
Expand Down
Loading