Skip to content

Commit

Permalink
A LibriTTS recipe on both ASR & Neural Codec Tasks (#1746)
Browse files Browse the repository at this point in the history
* added ASR & CODEC recipes for LibriTTS corpus
  • Loading branch information
JinZr authored Oct 21, 2024
1 parent 693d84a commit e8b6b92
Show file tree
Hide file tree
Showing 91 changed files with 12,174 additions and 17 deletions.
26 changes: 18 additions & 8 deletions egs/librispeech/ASR/zipformer/attention_decoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -236,7 +236,7 @@ def forward(
causal_mask = subsequent_mask(x.shape[0], device=x.device) # (seq_len, seq_len)
attn_mask = torch.logical_or(
padding_mask.unsqueeze(1), # (batch, 1, seq_len)
torch.logical_not(causal_mask).unsqueeze(0) # (1, seq_len, seq_len)
torch.logical_not(causal_mask).unsqueeze(0), # (1, seq_len, seq_len)
) # (batch, seq_len, seq_len)

if memory is not None:
Expand Down Expand Up @@ -367,7 +367,9 @@ def __init__(
self.num_heads = num_heads
self.head_dim = attention_dim // num_heads
assert self.head_dim * num_heads == attention_dim, (
self.head_dim, num_heads, attention_dim
self.head_dim,
num_heads,
attention_dim,
)
self.dropout = dropout
self.name = None # will be overwritten in training code; for diagnostics.
Expand Down Expand Up @@ -437,15 +439,19 @@ def forward(
if key_padding_mask is not None:
assert key_padding_mask.shape == (batch, src_len), key_padding_mask.shape
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2), float("-inf"),
key_padding_mask.unsqueeze(1).unsqueeze(2),
float("-inf"),
)

if attn_mask is not None:
assert (
attn_mask.shape == (batch, 1, src_len)
or attn_mask.shape == (batch, tgt_len, src_len)
assert attn_mask.shape == (batch, 1, src_len) or attn_mask.shape == (
batch,
tgt_len,
src_len,
), attn_mask.shape
attn_weights = attn_weights.masked_fill(attn_mask.unsqueeze(1), float("-inf"))
attn_weights = attn_weights.masked_fill(
attn_mask.unsqueeze(1), float("-inf")
)

attn_weights = attn_weights.view(batch * num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
Expand All @@ -456,7 +462,11 @@ def forward(

# (batch * head, tgt_len, head_dim)
attn_output = torch.bmm(attn_weights, v)
assert attn_output.shape == (batch * num_heads, tgt_len, head_dim), attn_output.shape
assert attn_output.shape == (
batch * num_heads,
tgt_len,
head_dim,
), attn_output.shape

attn_output = attn_output.transpose(0, 1).contiguous()
attn_output = attn_output.view(tgt_len, batch, num_heads * head_dim)
Expand Down
12 changes: 7 additions & 5 deletions egs/librispeech/ASR/zipformer/export-onnx-streaming.py
Original file line number Diff line number Diff line change
Expand Up @@ -487,6 +487,7 @@ def build_inputs_outputs(tensors, i):

add_meta_data(filename=encoder_filename, meta_data=meta_data)


def export_decoder_model_onnx(
decoder_model: OnnxDecoder,
decoder_filename: str,
Expand Down Expand Up @@ -754,30 +755,31 @@ def main():
)
logging.info(f"Exported joiner to {joiner_filename}")

if(params.fp16) :
if params.fp16:
from onnxconverter_common import float16

logging.info("Generate fp16 models")

encoder = onnx.load(encoder_filename)
encoder_fp16 = float16.convert_float_to_float16(encoder, keep_io_types=True)
encoder_filename_fp16 = params.exp_dir / f"encoder-{suffix}.fp16.onnx"
onnx.save(encoder_fp16,encoder_filename_fp16)
onnx.save(encoder_fp16, encoder_filename_fp16)

decoder = onnx.load(decoder_filename)
decoder_fp16 = float16.convert_float_to_float16(decoder, keep_io_types=True)
decoder_filename_fp16 = params.exp_dir / f"decoder-{suffix}.fp16.onnx"
onnx.save(decoder_fp16,decoder_filename_fp16)
onnx.save(decoder_fp16, decoder_filename_fp16)

joiner = onnx.load(joiner_filename)
joiner_fp16 = float16.convert_float_to_float16(joiner, keep_io_types=True)
joiner_filename_fp16 = params.exp_dir / f"joiner-{suffix}.fp16.onnx"
onnx.save(joiner_fp16,joiner_filename_fp16)
onnx.save(joiner_fp16, joiner_filename_fp16)

# Generate int8 quantization models
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection

logging.info("Generate int8 quantization models")

encoder_filename_int8 = params.exp_dir / f"encoder-{suffix}.int8.onnx"
quantize_dynamic(
model_input=encoder_filename,
Expand Down
8 changes: 4 additions & 4 deletions egs/librispeech/ASR/zipformer/export-onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -592,23 +592,23 @@ def main():
)
logging.info(f"Exported joiner to {joiner_filename}")

if(params.fp16) :
if params.fp16:
logging.info("Generate fp16 models")

encoder = onnx.load(encoder_filename)
encoder_fp16 = float16.convert_float_to_float16(encoder, keep_io_types=True)
encoder_filename_fp16 = params.exp_dir / f"encoder-{suffix}.fp16.onnx"
onnx.save(encoder_fp16,encoder_filename_fp16)
onnx.save(encoder_fp16, encoder_filename_fp16)

decoder = onnx.load(decoder_filename)
decoder_fp16 = float16.convert_float_to_float16(decoder, keep_io_types=True)
decoder_filename_fp16 = params.exp_dir / f"decoder-{suffix}.fp16.onnx"
onnx.save(decoder_fp16,decoder_filename_fp16)
onnx.save(decoder_fp16, decoder_filename_fp16)

joiner = onnx.load(joiner_filename)
joiner_fp16 = float16.convert_float_to_float16(joiner, keep_io_types=True)
joiner_filename_fp16 = params.exp_dir / f"joiner-{suffix}.fp16.onnx"
onnx.save(joiner_fp16,joiner_filename_fp16)
onnx.save(joiner_fp16, joiner_filename_fp16)

# Generate int8 quantization models
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
Expand Down
26 changes: 26 additions & 0 deletions egs/libritts/ASR/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# Introduction

LibriTTS is a multi-speaker English corpus of approximately 585 hours of read English speech at 24kHz sampling rate, prepared by Heiga Zen with the assistance of Google Speech and Google Brain team members.
The LibriTTS corpus is designed for TTS research. It is derived from the original materials (mp3 audio files from LibriVox and text files from Project Gutenberg) of the LibriSpeech corpus.
The main differences from the LibriSpeech corpus are listed below:
1. The audio files are at 24kHz sampling rate.
2. The speech is split at sentence breaks.
3. Both original and normalized texts are included.
4. Contextual information (e.g., neighbouring sentences) can be extracted.
5. Utterances with significant background noise are excluded.
For more information, refer to the paper "LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech", Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J. Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu, arXiv, 2019. If you use the LibriTTS corpus in your work, please cite this paper where it was introduced.


This recipe includes some different ASR models trained with [LibriTTS](https://openslr.org/60/).

[./RESULTS.md](./RESULTS.md) contains the latest results.

# Transducers

| | Encoder | Decoder |
|---------------------------------------|---------------------|--------------------|
| `zipformer` | Upgraded Zipformer | Embedding + Conv1d |

The decoder is modified from the paper
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/).
We place an additional Conv1d layer right after the input embedding layer.
58 changes: 58 additions & 0 deletions egs/libritts/ASR/RESULTS.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
# Results

## zipformer (zipformer + pruned stateless transducer)

See <https://github.com/k2-fsa/icefall/pull/1746> for more details.

[zipformer](./zipformer)

### Non-streaming

#### normal-scaled model, number of model parameters: 65549011, i.e., 65.55 M

You can find a pretrained model, training logs, decoding logs, and decoding results at:
<https://huggingface.co/zrjin/icefall-asr-libritts-zipformer-2024-10-20>

You can use <https://github.com/k2-fsa/sherpa> to deploy it.

| decoding method | test-clean | test-other | comment |
|----------------------|------------|------------|--------------------|
| greedy_search | 2.83 | 5.91 | --epoch 30 --avg 5 |
| modified_beam_search | 2.80 | 5.87 | --epoch 30 --avg 5 |
| fast_beam_search | 2.87 | 5.86 | --epoch 30 --avg 5 |
| greedy_search | 2.76 | 5.68 | --epoch 40 --avg 16|
| modified_beam_search | 2.74 | 5.66 | --epoch 40 --avg 16|
| fast_beam_search | 2.75 | 5.67 | --epoch 40 --avg 16|
| greedy_search | 2.74 | 5.67 | --epoch 50 --avg 30|
| modified_beam_search | 2.73 | 5.58 | --epoch 50 --avg 30|
| fast_beam_search | 2.78 | 5.61 | --epoch 50 --avg 30|


The training command is:
```bash
export CUDA_VISIBLE_DEVICES="0,1"
./zipformer/train.py \
--world-size 2 \
--num-epochs 50 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir zipformer/exp \
--causal 0 \
--full-libri 1 \
--max-duration 3600
```
This was used on 2 Nvidia A800 GPUs, you'll need to adjust the `CUDA_VISIBLE_DEVICES`, `--world-size` and `--max-duration` according to your hardware.

The decoding command is:
```bash
export CUDA_VISIBLE_DEVICES="0"
for m in greedy_search modified_beam_search fast_beam_search; do
./zipformer/decode.py \
--epoch 50 \
--avg 30 \
--use-averaged-model 1 \
--exp-dir ./zipformer/exp \
--max-duration 600 \
--decoding-method $m
done
```
1 change: 1 addition & 0 deletions egs/libritts/ASR/local/compile_hlg.py
1 change: 1 addition & 0 deletions egs/libritts/ASR/local/compile_lg.py
160 changes: 160 additions & 0 deletions egs/libritts/ASR/local/compute_fbank_libritts.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
#!/usr/bin/env python3
# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang,
# Zengwei Yao,)
# 2024 The Chinese Univ. of HK (authors: Zengrui Jin)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""
This file computes fbank features of the LibriTTS dataset.
It looks for manifests in the directory data/manifests.
The generated fbank features are saved in data/fbank.
"""

import argparse
import logging
import os
from pathlib import Path
from typing import Optional

import torch
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter
from lhotse.recipes.utils import read_manifests_if_cached

from icefall.utils import get_executor, str2bool

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)


def get_args():
parser = argparse.ArgumentParser()

parser.add_argument(
"--dataset",
type=str,
help="""Dataset parts to compute fbank. If None, we will use all""",
)
parser.add_argument(
"--perturb-speed",
type=str2bool,
default=True,
help="""Perturb speed with factor 0.9 and 1.1 on train subset.""",
)
parser.add_argument(
"--sampling-rate",
type=int,
default=24000,
help="""Sampling rate of the audio for computing fbank, the default value for LibriTTS is 24000, audio files will be resampled if a different sample rate is provided""",
)

return parser.parse_args()


def compute_fbank_libritts(
dataset: Optional[str] = None,
sampling_rate: int = 24000,
perturb_speed: Optional[bool] = True,
):
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
num_jobs = min(32, os.cpu_count())

num_mel_bins = 80

if dataset is None:
dataset_parts = (
"dev-clean",
"dev-other",
"test-clean",
"test-other",
"train-clean-100",
"train-clean-360",
"train-other-500",
)
else:
dataset_parts = dataset.split(" ", -1)

prefix = "libritts"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix=prefix,
suffix=suffix,
)
assert manifests is not None

assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)

extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))

with get_executor() as ex: # Initialize the executor only once.
for partition, m in manifests.items():
cuts_filename = f"{prefix}_cuts_{partition}.{suffix}"
if (output_dir / cuts_filename).is_file():
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
if sampling_rate != 24000:
logging.info(f"Resampling audio to {sampling_rate}Hz")
cut_set = cut_set.resample(sampling_rate)
if "train" in partition:
if perturb_speed:
logging.info(f"Doing speed perturb")
cut_set = (
cut_set
+ cut_set.perturb_speed(0.9)
+ cut_set.perturb_speed(1.1)
)

cut_set = cut_set.compute_and_store_features(
extractor=extractor,
storage_path=f"{output_dir}/{prefix}_feats_{partition}",
# when an executor is specified, make more partitions
num_jobs=num_jobs if ex is None else 80,
executor=ex,
storage_type=LilcomChunkyWriter,
)
cut_set.to_file(output_dir / cuts_filename)


if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))

compute_fbank_libritts(
dataset=args.dataset,
sampling_rate=args.sampling_rate,
perturb_speed=args.perturb_speed,
)
1 change: 1 addition & 0 deletions egs/libritts/ASR/local/compute_fbank_musan.py
Loading

0 comments on commit e8b6b92

Please sign in to comment.