-
Notifications
You must be signed in to change notification settings - Fork 303
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
19 changed files
with
2,475 additions
and
265 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,371 @@ | ||
#!/usr/bin/env python3 | ||
# | ||
# Copyright 2023 Xiaomi Corporation (Author: Fangjun Kuang, Wei Kang) | ||
# Copyright 2023 Danqing Fu ([email protected]) | ||
|
||
""" | ||
This script exports a transducer model from PyTorch to ONNX. | ||
We use the pre-trained model from | ||
https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15 | ||
as an example to show how to use this file. | ||
1. Download the pre-trained model | ||
cd egs/librispeech/ASR | ||
repo_url=https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-2023-05-15 | ||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url | ||
repo=$(basename $repo_url) | ||
pushd $repo | ||
git lfs pull --include "exp/pretrained.pt" | ||
cd exp | ||
ln -s pretrained.pt epoch-99.pt | ||
popd | ||
2. Export the model to ONNX | ||
./zipformer/export-onnx.py \ | ||
--tokens $repo/data/lang_bpe_500/tokens.txt \ | ||
--use-averaged-model 0 \ | ||
--epoch 99 \ | ||
--avg 1 \ | ||
--exp-dir $repo/exp \ | ||
--num-encoder-layers "2,2,3,4,3,2" \ | ||
--downsampling-factor "1,2,4,8,4,2" \ | ||
--feedforward-dim "512,768,1024,1536,1024,768" \ | ||
--num-heads "4,4,4,8,4,4" \ | ||
--encoder-dim "192,256,384,512,384,256" \ | ||
--query-head-dim 32 \ | ||
--value-head-dim 12 \ | ||
--pos-head-dim 4 \ | ||
--pos-dim 48 \ | ||
--encoder-unmasked-dim "192,192,256,256,256,192" \ | ||
--cnn-module-kernel "31,31,15,15,15,31" \ | ||
--decoder-dim 512 \ | ||
--joiner-dim 512 \ | ||
--causal False \ | ||
--chunk-size "16,32,64,-1" \ | ||
--left-context-frames "64,128,256,-1" \ | ||
--fp16 True | ||
It will generate the following 3 files inside $repo/exp: | ||
- encoder-epoch-99-avg-1.onnx | ||
- decoder-epoch-99-avg-1.onnx | ||
- joiner-epoch-99-avg-1.onnx | ||
See ./onnx_pretrained.py and ./onnx_check.py for how to | ||
use the exported ONNX models. | ||
""" | ||
|
||
import argparse | ||
import logging | ||
from pathlib import Path | ||
from typing import Dict, Tuple | ||
|
||
import onnx | ||
import torch | ||
import torch.nn as nn | ||
from onnxconverter_common import float16 | ||
from onnxruntime.quantization import QuantType, quantize_dynamic | ||
from train import add_model_arguments, get_model, get_params | ||
|
||
from icefall.checkpoint import ( | ||
average_checkpoints, | ||
average_checkpoints_with_averaged_model, | ||
find_checkpoints, | ||
load_checkpoint, | ||
) | ||
from icefall.utils import make_pad_mask, num_tokens, str2bool | ||
|
||
|
||
def get_parser(): | ||
parser = argparse.ArgumentParser( | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
) | ||
|
||
parser.add_argument( | ||
"--sampling-rate", | ||
type=int, | ||
default=24000, | ||
help="The sampleing rate of libritts dataset", | ||
) | ||
|
||
parser.add_argument( | ||
"--frame-shift", | ||
type=int, | ||
default=256, | ||
help="Frame shift.", | ||
) | ||
|
||
parser.add_argument( | ||
"--frame-length", | ||
type=int, | ||
default=1024, | ||
help="Frame shift.", | ||
) | ||
|
||
parser.add_argument( | ||
"--epoch", | ||
type=int, | ||
default=28, | ||
help="""It specifies the checkpoint to use for averaging. | ||
Note: Epoch counts from 0. | ||
You can specify --avg to use more checkpoints for model averaging.""", | ||
) | ||
|
||
parser.add_argument( | ||
"--iter", | ||
type=int, | ||
default=0, | ||
help="""If positive, --epoch is ignored and it | ||
will use the checkpoint exp_dir/checkpoint-iter.pt. | ||
You can specify --avg to use more checkpoints for model averaging. | ||
""", | ||
) | ||
|
||
parser.add_argument( | ||
"--avg", | ||
type=int, | ||
default=15, | ||
help="Number of checkpoints to average. Automatically select " | ||
"consecutive checkpoints before the checkpoint specified by " | ||
"'--epoch' and '--iter'", | ||
) | ||
|
||
parser.add_argument( | ||
"--use-averaged-model", | ||
type=str2bool, | ||
default=True, | ||
help="Whether to load averaged model. Currently it only supports " | ||
"using --epoch. If True, it would decode with the averaged model " | ||
"over the epoch range from `epoch-avg` (excluded) to `epoch`." | ||
"Actually only the models with epoch number of `epoch-avg` and " | ||
"`epoch` are loaded for averaging. ", | ||
) | ||
|
||
parser.add_argument( | ||
"--exp-dir", | ||
type=str, | ||
default="zipformer/exp", | ||
help="""It specifies the directory where all training related | ||
files, e.g., checkpoints, log, etc, are saved | ||
""", | ||
) | ||
|
||
parser.add_argument( | ||
"--fp16", | ||
type=str2bool, | ||
default=False, | ||
help="Whether to export models in fp16", | ||
) | ||
|
||
add_model_arguments(parser) | ||
|
||
return parser | ||
|
||
|
||
def add_meta_data(filename: str, meta_data: Dict[str, str]): | ||
"""Add meta data to an ONNX model. It is changed in-place. | ||
Args: | ||
filename: | ||
Filename of the ONNX model to be changed. | ||
meta_data: | ||
Key-value pairs. | ||
""" | ||
model = onnx.load(filename) | ||
for key, value in meta_data.items(): | ||
meta = model.metadata_props.add() | ||
meta.key = key | ||
meta.value = value | ||
|
||
onnx.save(model, filename) | ||
|
||
|
||
def export_model_onnx( | ||
model: nn.Module, | ||
model_filename: str, | ||
opset_version: int = 13, | ||
) -> None: | ||
"""Export the joiner model to ONNX format. | ||
The exported joiner model has two inputs: | ||
- encoder_out: a tensor of shape (N, joiner_dim) | ||
- decoder_out: a tensor of shape (N, joiner_dim) | ||
and produces one output: | ||
- logit: a tensor of shape (N, vocab_size) | ||
""" | ||
input_tensor = torch.rand((2, 80, 100), dtype=torch.float32) | ||
|
||
torch.onnx.export( | ||
model, | ||
(input_tensor,), | ||
model_filename, | ||
verbose=False, | ||
opset_version=opset_version, | ||
input_names=[ | ||
"features", | ||
], | ||
output_names=["audio"], | ||
dynamic_axes={ | ||
"features": {0: "N", 2: "F"}, | ||
"audio": {0: "N", 1: "T"}, | ||
}, | ||
) | ||
|
||
meta_data = { | ||
"model_type": "Vocos", | ||
"version": "1", | ||
"model_author": "k2-fsa", | ||
"comment": "ConvNext Vocos", | ||
} | ||
logging.info(f"meta_data: {meta_data}") | ||
|
||
add_meta_data(filename=model_filename, meta_data=meta_data) | ||
|
||
|
||
@torch.no_grad() | ||
def main(): | ||
args = get_parser().parse_args() | ||
args.exp_dir = Path(args.exp_dir) | ||
|
||
params = get_params() | ||
params.update(vars(args)) | ||
|
||
device = torch.device("cpu") | ||
params.device = device | ||
logging.info(params) | ||
|
||
logging.info("About to create model") | ||
model = get_model(params) | ||
model.to(device) | ||
|
||
if not params.use_averaged_model: | ||
if params.iter > 0: | ||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ | ||
: params.avg | ||
] | ||
if len(filenames) == 0: | ||
raise ValueError( | ||
f"No checkpoints found for" | ||
f" --iter {params.iter}, --avg {params.avg}" | ||
) | ||
elif len(filenames) < params.avg: | ||
raise ValueError( | ||
f"Not enough checkpoints ({len(filenames)}) found for" | ||
f" --iter {params.iter}, --avg {params.avg}" | ||
) | ||
logging.info(f"averaging {filenames}") | ||
model.to(device) | ||
model.load_state_dict(average_checkpoints(filenames, device=device)) | ||
elif params.avg == 1: | ||
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) | ||
else: | ||
start = params.epoch - params.avg + 1 | ||
filenames = [] | ||
for i in range(start, params.epoch + 1): | ||
if i >= 1: | ||
filenames.append(f"{params.exp_dir}/epoch-{i}.pt") | ||
logging.info(f"averaging {filenames}") | ||
model.to(device) | ||
model.load_state_dict(average_checkpoints(filenames, device=device)) | ||
else: | ||
if params.iter > 0: | ||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ | ||
: params.avg + 1 | ||
] | ||
if len(filenames) == 0: | ||
raise ValueError( | ||
f"No checkpoints found for" | ||
f" --iter {params.iter}, --avg {params.avg}" | ||
) | ||
elif len(filenames) < params.avg + 1: | ||
raise ValueError( | ||
f"Not enough checkpoints ({len(filenames)}) found for" | ||
f" --iter {params.iter}, --avg {params.avg}" | ||
) | ||
filename_start = filenames[-1] | ||
filename_end = filenames[0] | ||
logging.info( | ||
"Calculating the averaged model over iteration checkpoints" | ||
f" from {filename_start} (excluded) to {filename_end}" | ||
) | ||
model.to(device) | ||
model.load_state_dict( | ||
average_checkpoints_with_averaged_model( | ||
filename_start=filename_start, | ||
filename_end=filename_end, | ||
device=device, | ||
) | ||
) | ||
else: | ||
assert params.avg > 0, params.avg | ||
start = params.epoch - params.avg | ||
assert start >= 1, start | ||
filename_start = f"{params.exp_dir}/epoch-{start}.pt" | ||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" | ||
logging.info( | ||
f"Calculating the averaged model over epoch range from " | ||
f"{start} (excluded) to {params.epoch}" | ||
) | ||
model.to(device) | ||
model.load_state_dict( | ||
average_checkpoints_with_averaged_model( | ||
filename_start=filename_start, | ||
filename_end=filename_end, | ||
device=device, | ||
) | ||
) | ||
|
||
model.eval() | ||
vocos = model.generator | ||
|
||
if params.iter > 0: | ||
suffix = f"iter-{params.iter}" | ||
else: | ||
suffix = f"epoch-{params.epoch}" | ||
|
||
suffix += f"-avg-{params.avg}" | ||
|
||
opset_version = 13 | ||
|
||
logging.info("Exporting model") | ||
model_filename = params.exp_dir / f"vocos-{suffix}.onnx" | ||
export_model_onnx( | ||
vocos, | ||
model_filename, | ||
opset_version=opset_version, | ||
) | ||
logging.info(f"Exported vocos generator to {model_filename}") | ||
|
||
if params.fp16: | ||
logging.info("Generate fp16 models") | ||
|
||
model = onnx.load(model_filename) | ||
model_fp16 = float16.convert_float_to_float16(model, keep_io_types=True) | ||
model_filename_fp16 = params.exp_dir / f"vocos-{suffix}.fp16.onnx" | ||
onnx.save(model_fp16, model_filename_fp16) | ||
|
||
# Generate int8 quantization models | ||
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection | ||
|
||
logging.info("Generate int8 quantization models") | ||
|
||
model_filename_int8 = params.exp_dir / f"vocos-{suffix}.int8.onnx" | ||
quantize_dynamic( | ||
model_input=model_filename, | ||
model_output=model_filename_int8, | ||
op_types_to_quantize=["MatMul"], | ||
weight_type=QuantType.QInt8, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | ||
logging.basicConfig(format=formatter, level=logging.INFO) | ||
main() |
Oops, something went wrong.