-
Notifications
You must be signed in to change notification settings - Fork 304
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add the `voxpopuli` recipe - this is the data preparation - there is no ASR training and no results * update the PR#1374 (feedback from @csukuangfj) - fixing .py headers and docstrings - removing BUT specific parts of `prepare.sh` - adding assert `num_jobs >= num_workers` to `compute_fbank.py` - narrowing list of languages (let's limit to ASR sets with transcripts for now) - added links to `README.md` - extending `text_from_manifest.py`
- Loading branch information
1 parent
6d275dd
commit 59c9438
Showing
16 changed files
with
1,296 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
# Readme | ||
|
||
This recipe contains data preparation for the | ||
[VoxPopuli](https://github.com/facebookresearch/voxpopuli) dataset | ||
[(pdf)](https://aclanthology.org/2021.acl-long.80.pdf). | ||
At the moment, without model training. | ||
|
||
|
||
## audio per language | ||
|
||
| language | Size | Hrs. untranscribed | Hrs. transcribed | | ||
|----------|--------|--------------------|------------------| | ||
| bg | 295G | 17.6K | - | | ||
| cs | 308G | 18.7K | 62 | | ||
| da | 233G | 13.6K | - | | ||
| de | 379G | 23.2K | 282 | | ||
| el | 305G | 17.7K | - | | ||
| en | 382G | 24.1K | 543 | | ||
| es | 362G | 21.4K | 166 | | ||
| et | 179G | 10.6K | 3 | | ||
| fi | 236G | 14.2K | 27 | | ||
| fr | 376G | 22.8K | 211 | | ||
| hr | 132G | 8.1K | 43 | | ||
| hu | 297G | 17.7K | 63 | | ||
| it | 361G | 21.9K | 91 | | ||
| lt | 243G | 14.4K | 2 | | ||
| lv | 217G | 13.1K | - | | ||
| mt | 147G | 9.1K | - | | ||
| nl | 322G | 19.0K | 53 | | ||
| pl | 348G | 21.2K | 111 | | ||
| pt | 300G | 17.5K | - | | ||
| ro | 296G | 17.9K | 89 | | ||
| sk | 201G | 12.1K | 35 | | ||
| sl | 190G | 11.3K | 10 | | ||
| sv | 272G | 16.3K | - | | ||
| | | | | | ||
| total | 6.3T | 384K | 1791 | | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,248 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) | ||
# 2023 Brno University of Technology (authors: Karel Veselý) | ||
# | ||
# See ../../../../LICENSE for clarification regarding multiple authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
""" | ||
This file computes fbank features of VoxPopuli dataset. | ||
Usage example: | ||
python3 ./local/compute_fbank.py \ | ||
--src-dir data/fbank --output-dir data/fbank \ | ||
--num-jobs 100 --num-workers 25 \ | ||
--prefix "voxpopuli-${task}-${lang}" \ | ||
--dataset train \ | ||
--trim-to-supervisions True \ | ||
--speed-perturb True | ||
It looks for raw CutSet in the directory data/fbank | ||
located at: `{src_dir}/{prefix}_cuts_{dataset}_raw.jsonl.gz`. | ||
The generated fbank features are saved in `data/fbank/{prefix}-{dataset}_feats` | ||
and CutSet manifest stored in `data/fbank/{prefix}_cuts_{dataset}.jsonl.gz`. | ||
Typically, the number of workers is smaller than number of jobs | ||
(see --num-jobs 100 --num-workers 25 in the example). | ||
And, the number of jobs should be at least the number of workers (it's checked). | ||
""" | ||
|
||
import argparse | ||
import logging | ||
import multiprocessing | ||
import os | ||
from concurrent.futures import ProcessPoolExecutor | ||
from pathlib import Path | ||
|
||
import sentencepiece as spm | ||
import torch | ||
from filter_cuts import filter_cuts | ||
from lhotse import ( | ||
CutSet, | ||
Fbank, | ||
FbankConfig, | ||
LilcomChunkyWriter, | ||
is_caching_enabled, | ||
set_caching_enabled, | ||
) | ||
|
||
from icefall.utils import str2bool | ||
|
||
# Torch's multithreaded behavior needs to be disabled or | ||
# it wastes a lot of CPU and slow things down. | ||
# Do this outside of main() in case it needs to take effect | ||
# even when we are not invoking the main (e.g. when spawning subprocesses). | ||
torch.set_num_threads(1) | ||
torch.set_num_interop_threads(1) | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument( | ||
"--bpe-model", | ||
type=str, | ||
help="""Path to the bpe.model. If not None, we will remove short and | ||
long utterances before extracting features""", | ||
) | ||
parser.add_argument( | ||
"--src-dir", | ||
type=str, | ||
help="""Folder with the input manifest files.""", | ||
default="data/manifests", | ||
) | ||
parser.add_argument( | ||
"--output-dir", | ||
type=str, | ||
help="""Folder with the output manifests (cuts) and feature files.""", | ||
default="data/fbank", | ||
) | ||
|
||
parser.add_argument( | ||
"--prefix", | ||
type=str, | ||
help="""Prefix of the manifest files.""", | ||
default="", | ||
) | ||
parser.add_argument( | ||
"--dataset", | ||
type=str, | ||
help="""Dataset parts to compute fbank (train,test,dev).""", | ||
default=None, | ||
) | ||
|
||
parser.add_argument( | ||
"--num-jobs", | ||
type=int, | ||
help="""Number of jobs (i.e. files with extracted features)""", | ||
default=50, | ||
) | ||
parser.add_argument( | ||
"--num-workers", | ||
type=int, | ||
help="""Number of parallel workers""", | ||
default=10, | ||
) | ||
parser.add_argument( | ||
"--speed-perturb", | ||
type=str2bool, | ||
default=False, | ||
help="""Enable speed perturbation for the set.""", | ||
) | ||
parser.add_argument( | ||
"--trim-to-supervisions", | ||
type=str2bool, | ||
default=False, | ||
help="""Apply `trim-to-supervision` to cut set.""", | ||
) | ||
|
||
return parser.parse_args() | ||
|
||
|
||
def compute_fbank_features(args: argparse.Namespace): | ||
set_caching_enabled(True) # lhotse | ||
|
||
src_dir = Path(args.src_dir) | ||
output_dir = Path(args.output_dir) | ||
num_jobs = args.num_jobs | ||
num_workers = min(args.num_workers, os.cpu_count()) | ||
num_mel_bins = 80 | ||
|
||
bpe_model = args.bpe_model | ||
if bpe_model: | ||
logging.info(f"Loading {bpe_model}") | ||
sp = spm.SentencePieceProcessor() | ||
sp.load(bpe_model) | ||
|
||
prefix = args.prefix # "ELEF_TRAIN" | ||
dataset = args.dataset | ||
suffix = "jsonl.gz" | ||
|
||
cuts_raw_filename = Path(f"{src_dir}/{prefix}_cuts_{dataset}_raw.{suffix}") | ||
cuts_raw = CutSet.from_file(cuts_raw_filename) | ||
|
||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) | ||
|
||
cuts_filename = Path(f"{prefix}_cuts_{dataset}.{suffix}") | ||
if (output_dir / cuts_filename).is_file(): | ||
logging.info(f"{output_dir/cuts_filename} already exists - skipping.") | ||
return | ||
|
||
logging.info(f"Processing {output_dir/cuts_filename}") | ||
cut_set = cuts_raw | ||
|
||
if bpe_model: | ||
cut_set = filter_cuts(cut_set, sp) | ||
|
||
if args.speed_perturb: | ||
cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) | ||
|
||
if args.trim_to_supervisions: | ||
logging.info(f"About to `trim_to_supervisions()` {output_dir / cuts_filename}") | ||
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False) | ||
else: | ||
logging.info( | ||
"Not doing `trim_to_supervisions()`, " | ||
"to enable use --trim-to-supervision=True" | ||
) | ||
|
||
cut_set = cut_set.to_eager() # disallow lazy evaluation (sorting requires it) | ||
cut_set = cut_set.sort_by_recording_id() # enhances AudioCache hit rate | ||
|
||
# We typically use `num_jobs=100, num_workers=20` | ||
# - this is helpful for large databases | ||
# - both values are configurable externally | ||
assert num_jobs >= num_workers, (num_jobs, num_workers) | ||
executor = ProcessPoolExecutor( | ||
max_workers=num_workers, | ||
mp_context=multiprocessing.get_context("spawn"), | ||
initializer=set_caching_enabled, | ||
initargs=(is_caching_enabled(),), | ||
) | ||
|
||
logging.info( | ||
f"executor {executor} : num_workers {num_workers}, num_jobs {num_jobs}" | ||
) | ||
|
||
cut_set = cut_set.compute_and_store_features( | ||
extractor=extractor, | ||
storage_path=f"{output_dir / prefix}-{dataset}_feats", | ||
num_jobs=num_jobs, | ||
executor=executor, | ||
storage_type=LilcomChunkyWriter, | ||
) | ||
|
||
# correct small deviations of duration, caused by speed-perturbation | ||
for cut in cut_set: | ||
assert len(cut.supervisions) == 1, (len(cut.supervisions), cut.id) | ||
duration_difference = abs(cut.supervisions[0].duration - cut.duration) | ||
tolerance = 0.02 # 20ms | ||
if duration_difference == 0.0: | ||
pass | ||
elif duration_difference <= tolerance: | ||
logging.info( | ||
"small mismatch of the supervision duration " | ||
f"(Δt = {duration_difference*1000}ms), " | ||
f"correcting : cut.duration {cut.duration} -> " | ||
f"supervision {cut.supervisions[0].duration}" | ||
) | ||
cut.supervisions[0].duration = cut.duration | ||
else: | ||
logging.error( | ||
"mismatch of cut/supervision duration " | ||
f"(Δt = {duration_difference*1000}ms) : " | ||
f"cut.duration {cut.duration}, " | ||
f"supervision {cut.supervisions[0].duration}" | ||
) | ||
raise ValueError( | ||
"mismatch of cut/supervision duration " | ||
f"(Δt = {duration_difference*1000}ms)" | ||
) | ||
|
||
# store the cutset | ||
logging.info(f"storing CutSet to : `{output_dir / cuts_filename}`") | ||
cut_set.to_file(output_dir / cuts_filename) | ||
|
||
|
||
if __name__ == "__main__": | ||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | ||
logging.basicConfig(format=formatter, level=logging.INFO) | ||
|
||
args = get_args() | ||
logging.info(vars(args)) | ||
|
||
compute_fbank_features(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
../../../librispeech/ASR/local/compute_fbank_musan.py |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) | ||
# 2023 Brno University of Technology (authors: Karel Veselý) | ||
# | ||
# See ../../../../LICENSE for clarification regarding multiple authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
This file displays duration statistics of utterances in a manifest. | ||
You can use the displayed value to choose minimum/maximum duration | ||
to remove short and long utterances during the training. | ||
Usage example: | ||
python3 ./local/display_manifest_statistics.py data/fbank/*_cuts*.jsonl.gz | ||
See the function `remove_short_and_long_utt()` in transducer/train.py | ||
for usage. | ||
""" | ||
|
||
import argparse | ||
|
||
from lhotse import load_manifest_lazy | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser("Compute statistics for 'cuts' .jsonl.gz") | ||
|
||
parser.add_argument( | ||
"filename", | ||
help="data/fbank/imported_cuts_bison-train_trim.jsonl.gz", | ||
) | ||
|
||
return parser.parse_args() | ||
|
||
|
||
def main(): | ||
args = get_args() | ||
|
||
cuts = load_manifest_lazy(args.filename) | ||
cuts.describe() | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.