-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Jyotish
committed
May 4, 2019
0 parents
commit 5facb9f
Showing
5 changed files
with
273 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
# PEGASOS SVM | ||
|
||
## Setting up | ||
|
||
- Run `pip install -r requirements.txt` to install required packages. | ||
- Download and extract the MNIST fashion dataset files to `data` directory. | ||
|
||
## Running the code | ||
|
||
The working directory should be `src`. | ||
|
||
### Without kernel | ||
|
||
``` | ||
python svm.py --dataset_dir ../data --iterations 10000 | ||
``` | ||
|
||
### With kernel | ||
``` | ||
python svm.py --dataset_dir ../data --iterations 2 --kernel | ||
``` | ||
|
||
## Bonus | ||
|
||
### Without kernel | ||
|
||
``` | ||
python svm-multiclass.py --dataset_dir ../data --iterations 10000 | ||
``` | ||
|
||
### With kernel | ||
``` | ||
python svm-multiclass.py --dataset_dir ../data --iterations 2 --kernel | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
numpy==1.16.3 | ||
python-mnist==0.6 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
#!/usr/bin/env python | ||
|
||
import math | ||
import numpy as np | ||
from random import randint | ||
|
||
def pegasos(x, y, weights=None, iterations=2000, lam=1): | ||
if type(weights) == type(None): weights = np.zeros(x[0].shape) | ||
num_S = len(y) | ||
for i in range(iterations): | ||
it = randint(0, num_S-1) | ||
step = 1/(lam*(i+1)) | ||
decision = y[it] * weights @ x[it].T | ||
if decision < 1: | ||
weights = (1 - step*lam) * weights + step*y[it]*x[it] | ||
else: | ||
weights = (1 - step*lam) * weights | ||
#weights = min(1, (1/math.sqrt(lam))/(np.linalg.norm(weights)))*weights | ||
return weights | ||
|
||
def kernelized_pegasos(x, y, kernel, weights=None, iterations=2000, lam=1): | ||
num_S = len(y) | ||
if type(weights) == type(None): weights = np.zeros(num_S) | ||
for _ in range(iterations): | ||
it = randint(0, num_S) | ||
decision = 0 | ||
for j in range(num_S): | ||
decision += weights[j] * y[it] * kernel(x[it], x[j]) | ||
decision *= y[it]/lam | ||
if decision < 1: | ||
weights[it] += 1 | ||
return weights | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
#!/usr/bin/env python | ||
|
||
import os | ||
import sys | ||
import argparse | ||
import numpy as np | ||
from mnist import MNIST | ||
import random | ||
|
||
from pegasos import * | ||
|
||
class Dataset(): | ||
|
||
def __init__(self, data_dir, labels_to_load=[0,1]): | ||
self.labels_to_load = labels_to_load | ||
self.mnist_loader = MNIST(data_dir) | ||
print('Loading dataset...') | ||
|
||
self.xtrain, self.ytrain = self.mnist_loader.load_training() | ||
self.xtrain = np.array(self.xtrain, dtype=np.float64) | ||
self.ytrain = np.array(self.ytrain, dtype=np.float64) | ||
|
||
self.xtest, self.ytest = self.mnist_loader.load_testing() | ||
self.xtest = np.array(self.xtest, dtype=np.float64) | ||
self.ytest = np.array(self.ytest, dtype=np.float64) | ||
print('Dataset loaded') | ||
|
||
def send_data(self, id): | ||
dataset = { | ||
'data': [], | ||
'labels': [] | ||
} | ||
|
||
for i in range(len(self.ytrain)): | ||
dataset['data'].append(self.xtrain[i]) | ||
if self.ytrain[i] == id: | ||
dataset['labels'].append(1) | ||
else: | ||
dataset['labels'].append(-1) | ||
dataset['data'] = np.array(dataset['data']) | ||
dataset['labels'] = np.array(dataset['labels']) | ||
return dataset | ||
|
||
def kernel_function(x, y): | ||
mean = np.linalg.norm(x - y)**2 | ||
variance = 1 | ||
return np.exp(-mean/(2*variance)) | ||
|
||
def parse_arguments(): | ||
# args | ||
parser = argparse.ArgumentParser(description='') | ||
parser.add_argument('--dataset_dir', required=True) | ||
parser.add_argument('--iterations', type=int, default=10) | ||
parser.add_argument('--kernel', default=False, action='store_true') | ||
parser.add_argument('--lambda', default=1, type=float) | ||
return parser.parse_args() | ||
|
||
def main(): | ||
args = parse_arguments() | ||
data = Dataset(args.dataset_dir) | ||
class_weights = [] | ||
|
||
for i in range(10): | ||
if args.kernel: | ||
print('Using RBF kernel') | ||
dataset = data.send_data(i) | ||
class_weights.append(kernelized_pegasos( | ||
x=dataset['data'], | ||
y=dataset['labels'], | ||
kernel=kernel_function, | ||
iterations=args.iterations | ||
)) | ||
else: | ||
dataset = data.send_data(i) | ||
class_weights.append(pegasos( | ||
x=dataset['data'], | ||
y=dataset['labels'], | ||
iterations=args.iterations | ||
)) | ||
|
||
# Testing | ||
errors = 0 | ||
for i in range(len(data.ytest)): | ||
predictions = [] | ||
for k in range(10): | ||
weights = class_weights[k] | ||
if args.kernel: | ||
decision = 0 | ||
for j in range(len(data.ytrain)): | ||
decision += weights[j]*data.ytrain[j]*kernel_function(data.xtrain[j], data.xtest[i]) | ||
else: | ||
decision = weights @ data.xtest[i].T | ||
predictions.append(decision) | ||
predictions = np.array(predictions) | ||
class_label = predictions.argmax() | ||
if class_label != data.ytest[i]: errors += 1 | ||
accuracy = 1 - errors/len(data.ytest) | ||
print('Error:', errors/len(data.ytest)) | ||
print('Accuracy:', accuracy) | ||
|
||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
#!/usr/bin/env python | ||
|
||
import os | ||
import sys | ||
import argparse | ||
import numpy as np | ||
from mnist import MNIST | ||
|
||
from pegasos import * | ||
|
||
class Dataset(): | ||
|
||
def __init__(self, data_dir, labels_to_load=[0,1]): | ||
self.labels_to_load = labels_to_load | ||
self.mnist_loader = MNIST(data_dir) | ||
print('Loading dataset...') | ||
|
||
self.xtrain, self.ytrain = self.mnist_loader.load_training() | ||
self.xtrain = np.array(self.xtrain, dtype=np.float64) | ||
self.ytrain = np.array(self.ytrain, dtype=np.float64) | ||
self.xtrain, self.ytrain = self.trim_dataset(self.xtrain, self.ytrain) | ||
|
||
self.xtest, self.ytest = self.mnist_loader.load_testing() | ||
self.xtest = np.array(self.xtest, dtype=np.float64) | ||
self.ytest = np.array(self.ytest, dtype=np.float64) | ||
self.xtest, self.ytest = self.trim_dataset(self.xtest, self.ytest) | ||
print('Dataset loaded') | ||
|
||
def trim_dataset(self, x, y): | ||
xtrain = [] | ||
ytrain = [] | ||
for i in range(len(y)): | ||
if y[i] == 0: | ||
ytrain.append(-1) | ||
xtrain.append(x[i]) | ||
elif y[i] == 1: | ||
ytrain.append(1) | ||
xtrain.append(x[i]) | ||
else: | ||
pass | ||
return np.array(xtrain), np.array(ytrain) | ||
|
||
def kernel_function(x, y): | ||
mean = np.linalg.norm(x - y)**2 | ||
variance = 1 | ||
return np.exp(-mean/(2*variance)) | ||
|
||
def parse_arguments(): | ||
# args | ||
parser = argparse.ArgumentParser(description='') | ||
parser.add_argument('--dataset_dir', required=True) | ||
parser.add_argument('--iterations', type=int, default=10) | ||
parser.add_argument('--kernel', default=False, action='store_true') | ||
parser.add_argument('--lambda', default=1, type=float) | ||
return parser.parse_args() | ||
|
||
def kernelized_svm(args, data): | ||
weights = kernelized_pegasos( | ||
x=data.xtrain, | ||
y=data.ytrain, | ||
kernel=kernel_function, | ||
iterations=args.iterations | ||
) | ||
errors = 0 | ||
for i in range(len(data.ytest[:500])): | ||
decision = 0 | ||
for j in range(len(data.ytrain)): | ||
decision += weights[j]*data.ytrain[j]*kernel_function(data.xtrain[j], data.xtest[i]) | ||
if decision < 0: | ||
prediction = -1 | ||
else: | ||
prediction = 1 | ||
if prediction != data.ytest[i]: errors += 1 | ||
return 1 - errors/len(data.ytest) | ||
|
||
def svm(args, data): | ||
weights = pegasos( | ||
x=data.xtrain, | ||
y=data.ytrain, | ||
iterations=args.iterations | ||
) | ||
errors = 0 | ||
for i in range(len(data.ytest)): | ||
decision = weights @ data.xtest[i].T | ||
if decision < 0: | ||
prediction = -1 | ||
else: | ||
prediction = 1 | ||
if prediction != data.ytest[i]: errors += 1 | ||
return 1 - errors/len(data.ytest) | ||
|
||
def main(): | ||
args = parse_arguments() | ||
data = Dataset(args.dataset_dir) | ||
|
||
if args.kernel: | ||
print('Using RBF kernel') | ||
accuracy = kernelized_svm(args, data) | ||
else: | ||
accuracy = svm(args, data) | ||
print('Accuracy:', accuracy) | ||
|
||
main() |