Contributions are welcome. Inspired by GNNpapers.
-
Causal Machine Learning: A Survey and Open Problems, 2022. paper
Jean Kaddour, Aengus Lynch, Qi Liu, Matt J. Kusner, Ricardo Silva.
-
A Unified Survey of Heterogeneous Treatment Effect Estimation and Uplift Modeling, ACM Computing Surveys, 2022. paper
Weijia Zhang, Jiuyong Li, Lin Liu.
-
Toward Causal Representation Learning, IEEE, 2021. paper
Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, Yoshua Bengio.
-
A Survey of Learning Causality with Data: Problems and Methods, ACM, 2020. paper
Ruocheng Guo, Lu Cheng, Jundong Li, P. Richard Hahn, Huan Liu.
-
Machine learning and causal inference for policy evaluation, KDD, 2015. paper
Susan Athey.
-
Can Transformers be Strong Treatment Effect Estimators?, arxiv, 2022. paper code
Yi-Fan Zhang, Hanlin Zhang, Zachary C. Lipton, Li Erran Li, Eric P. Xing.
-
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms, AISTATS, 2021. paper
Alicia Curth, Mihaela van der Schaar.
-
Causal Effect Inference for Structured Treatments, NeurIPS, 2021. paper code
Jean Kaddour, Yuchen Zhu, Qi Liu, Matt J. Kusner, Ricardo Silva.
-
Treatment Effect Estimation with Disentangled Latent Factors, AAAI, 2021. paper code
Weijia Zhang, Lin Liu, Jiuyong Li.
-
Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments, arXiv, 2020. paper
Victor Chernozhukov, Mert Demirer, Esther Duflo, Iván Fernández-Val.
-
Quasi-Oracle Estimation of Heterogeneous Treatment Effects, arXiv, 2019. paper
Xinkun Nie, Stefan Wager.
-
Generalized Random Forests, Annals of Statistics, 2019. paper
Susan Athey, Julie Tibshirani, Stefan Wager.
-
Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments, NeurIPS, 2019. paper
Vasilis Syrgkanis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi, Greg Lewis.
-
Orthogonal Random Forest for Causal Inference, PMLR, 2019. paper
Miruna Oprescu, Vasilis Syrgkanis, Zhiwei Steven Wu.
-
Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning, PNAS, 2019. paper
Sören R. Künzel, Jasjeet S. Sekhon, Peter J. Bickel, Bin Yu.
-
Machine Learning Analysis of Heterogeneity in the Effect of Student Mindset Interventions, Observational Studies, 2019. paper
Fredrik D. Johansson.
-
Estimation and Inference of Heterogeneous Treatment Effects using Random Forests, JASA, 2018. paper
Stefan Wager, Susan Athey.
-
Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design, PMLR, 2018. paper
Ahmed Alaa, Mihaela Schaar.
-
Transfer Learning for Estimating Causal Effects using Neural Networks, arXiv, 2018. paper
Sören R. Künzel, Bradly C. Stadie, Nikita Vemuri, Varsha Ramakrishnan, Jasjeet S. Sekhon, Pieter Abbeel.
-
Recursive partitioning for heterogeneous causal effects, PNAS, 2016. paper
Susan Athey, Guido Imbens.
-
Machine Learning Methods for Estimating Heterogeneous Causal Effects, ArXiv, 2015. paper
Susan Athey, Guido W. Imbens.
-
VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments, ICLR, 2021. paper code
Lizhen Nie, Mao Ye, Qiang Liu, Dan Nicolae.
-
Learning Counterfactual Representations for Estimating Individual Dose-Response Curves, AAAI, 2020. paper code
Patrick Schwab, Lorenz Linhardt, Stefan Bauer, Joachim M. Buhmann, Walter Karlen.
-
Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks, NeurIPS, 2020. paper code
Ioana Bica, James Jordon, Mihaela van der Schaar.
-
Learning Individual Causal Effects from Networked Observational Data, WSDM, 2020. paper code
Ruocheng Guo, Jundong Li, Huan Liu.
-
Learning Overlapping Representations for the Estimation of Individualized Treatment Effects, AISTATS, 2020. paper
Yao Zhang, Alexis Bellot, Mihaela van der Schaar.
-
Adapting Neural Networks for the Estimation of Treatment Effects, arXiv, 2019. paper code
Claudia Shi, David M. Blei, Victor Veitch.
-
Program Evaluation and Causal Inference with High-Dimensional Data, arXiv, 2018. paper
Alexandre Belloni, Victor Chernozhukov, Ivan Fernández-Val, Christian Hansen.
-
GANITE: Estimation of Individualized Treatment Effects using Generative Adversarial Nets, ICLR, 2018. paper code
Jinsung Yoon, James Jordon, Mihaela van der Schaar.
-
Estimation of Individual Treatment Effect in Latent Confounder Models via Adversarial Learning, arXiv, 2018. paper
Changhee Lee, Nicholas Mastronarde, Mihaela van der Schaar.
-
Deep IV: A Flexible Approach for Counterfactual Prediction, PMLR, 2017. paper
Uri Shalit, Fredrik D. Johansson, David Sontag.
-
Causal Effect Inference with Deep Latent-Variable Models, arXiv, 2017. paper code
Christos Louizos, Uri Shalit, Joris Mooij, David Sontag, Richard Zemel, Max Welling.
-
Estimating individual treatment effect: generalization bounds and algorithms, PMLR, 2017. paper code
Uri Shalit, Fredrik D. Johansson, David Sontag.
-
Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders, ICML, 2020. paper code
Ioana Bica, Ahmed M. Alaa, Mihaela van der Schaar.
-
Estimating Counterfactual Treatment Outcomes over Time through Adversarially Balanced Representations, ICLR, 2020. paper code
Ioana Bica, Ahmed M. Alaa, James Jordon, Mihaela van der Schaar.
-
Generative Learning of Counterfactual for Synthetic Control Applications in Econometrics, arXiv, 2019. paper
Chirag Modi, Uros Seljak.
-
Robust Synthetic Control, JMLR, 2019. paper
Muhammad Amjad, Devavrat Shah, Dennis Shen.
-
ArCo: An artificial counterfactual approach for high-dimensional panel time-series data, Journal of Econometrics, 2018. paper
Carlos Carvalho, Ricardo Masini, Marcelo C. Medeiros.
-
Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks, NIPS, 2018. paper code
Sonali Parbhoo, Stefan Bauer, Patrick Schwab.
-
Deep Structural Causal Models for Tractable Counterfactual Inference, NeurIPS, 2020. paper code
Nick Pawlowski, Daniel C. Castro, Ben Glocker.
-
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments, arXiv, 2021. paper
Sonali Parbhoo, Stefan Bauer, Patrick Schwab.
-
Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks, arXiv, 2019. paper code
Patrick Schwab, Lorenz Linhardt, Walter Karlen.
-
Representation Learning for Treatment Effect Estimation from Observational Data, NeurIPS, 2019. paper
Liuyi Yao et al.
-
Invariant Models for Causal Transfer Learning, JMLR, 2018. paper
Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, Jonas Peters.
-
Learning Representations for Counterfactual Inference, arXiv, 2018. paper code
Fredrik D. Johansson, Uri Shalit, David Sontag.
-
Sparsity Double Robust Inference of Average Treatment Effects, arXiv, 2019. paper
Jelena Bradic, Stefan Wager, Yinchu Zhu.
-
Deep Neural Networks for Estimation and Inference, arXiv, 2019. paper
Max H. Farrell, Tengyuan Liang, Sanjog Misra.
-
Deep Counterfactual Networks with Propensity-Dropout, arXiv, 2017. paper
Ahmed M. Alaa, Michael Weisz, Mihaela van der Schaar.
-
Double/Debiased Machine Learning for Treatment and Causal Parameters, arXiv, 2017. paper
Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, James Robins.
-
Doubly Robust Policy Evaluation and Optimization, Statistical Science, 2014. paper
Miroslav Dudík, Dumitru Erhan, John Langford, Lihong Li.
-
Differentiable Causal Discovery Under Unmeasured Confounding, arXiv, 2021. paper
Rohit Bhattacharya, Tushar Nagarajan, Daniel Malinsky, Ilya Shpitser.
-
Causal Discovery with Attention-Based Convolutional Neural Networks, Machine Learning and Knowledge Extraction, 2019. paper code
Meike Nauta, Doina Bucur, Christin Seifert.
-
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms, arXiv, 2019. paper
Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa Bilaniuk, Anirudh Goyal, Christopher Pal.
-
Causal Discovery with Reinforcement Learning, arXiv, 2019. paper
Shengyu Zhu, Zhitang Chen.
-
CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training, arXiv, 2019. paper
Murat Kocaoglu, Christopher Snyder, Alexandros G. Dimakis, Sriram Vishwanath.
-
Learning When-to-Treat Policies, arXiv, 2019. paper
Xinkun Nie, Emma Brunskill, Stefan Wager.
-
Learning Neural Causal Models from Unknown Interventions, arXiv, 2019. paper code
Nan Rosemary Ke, Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo Larochelle, Chris Pal, Yoshua Bengio.
-
Counterfactual Policy Optimization Using Domain-Adversarial Neural Networks, ICML, 2018. paper
Onur Atan, William R. Zame, Mihaela van der Schaar.
-
Causal Bandits: Learning Good Interventions via Causal Inference, NIPS, 2016. paper
Finnian Lattimore, Tor Lattimore, Mark D. Reid.
-
Counterfactual Risk Minimization: Learning from Logged Bandit Feedback, arXiv, 2015. paper
Adith Swaminathan, Thorsten Joachims.
-
The Deconfounded Recommender: A Causal Inference Approach to Recommendation, arXiv, 2019. paper code
Yixin Wang, Dawen Liang, Laurent Charlin, David M. Blei.
-
The Blessings of Multiple Causes, arXiv, 2019. paper
Yixin Wang, David M. Blei.
comments
-
Comment: Reflections on the Deconfounder, arXiv, 2019. paper
Alexander D'Amour
-
On Multi-Cause Causal Inference with Unobserved Confounding: Counterexamples, Impossibility, and Alternatives, arXiv, 2019. paper
Alexander D'Amour
-
Comment on "Blessings of Multiple Causes", arXiv, 2019. paper
Elizabeth L. Ogburn, Ilya Shpitser, Eric J. Tchetgen Tchetgen.
-
The Blessings of Multiple Causes: A Reply to Ogburn et al. (2019), arXiv, 2019. paper
Yixin Wang, David M. Blei.
-
Recommendations as Treatments: Debiasing Learning and Evaluation, PMLR, 2016. paper
Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, Thorsten Joachims.
-
Collaborative Prediction and Ranking with Non-Random Missing Data, RecSys, 2009. paper
Benjamin M. Marlin, Richard S. Zemel.
-
Counterfactual Multi-Agent Policy Gradients, AAAI, 2018. paper
Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, Shimon Whiteson.
-
Ultra-high dimensional variable selection for doubly robust causal inference, Biometrics, 2022. paper code slides
Dingke Tang, Dehan Kong, Wenliang Pan, Linbo Wang
-
Outcome‐adaptive lasso: variable selection for causal inference, Biometrics 2017. paper video
Susan M. Shortreed, Ashkan Ertefaie
-
Double machine learning-based programme evaluation under unconfoundedness, The Econometrics Journal, 2022. paper
Michael C Knaus.
-
State-Building through Public Land Disposal? An Application of Matrix Completion for Counterfactual Prediction, arXiv, 2021. paper code
Jason Poulos.
-
RNN-based counterfactual prediction, with an application to homestead policy and public schooling, JRSS-C, 2021. paper code
Jason Poulos, Shuxi Zeng.
-
Estimating Treatment Effects with Causal Forests: An Application, arXiv, 2019. paper
Susan Athey, Stefan Wager.
-
Ensemble Methods for Causal Effects in Panel Data Settings, AER P&P, 2019. paper
Susan Athey, Mohsen Bayati, Guido W. Imbens, Zhaonan Qu.
-
Counterfactual Data Augmentation for Neural Machine Translation, ACL, 2021. paper code
Qi Liu, Matt Kusner, Phil Blunsom.
-
Everything Has a Cause: Leveraging Causal Inference in Legal Text Analysis, arXIv, 2021. paper code
Xiao Liu, Da Yin, Yansong Feng, Yuting Wu, Dongyan Zhao.
-
Causal Effects of Linguistic Properties, arXIv, 2021. paper
Reid Pryzant, Dallas Card, Dan Jurafsky, Victor Veitch, Dhanya Sridhar.
-
Sketch and Customize: A Counterfactual Story Generator, arXIv, 2021. paper
Changying Hao, Liang Pang, Yanyan Lan, Yan Wang, Jiafeng Guo, Xueqi Cheng.
-
Counterfactual Generator: A Weakly-Supervised Method for Named Entity Recognition, EMNLP, 2020. paper code
Xiangji Zeng, Yunliang Li, Yuchen Zhai, Yin Zhang.
-
Using Text Embeddings for Causal Inference, arXIv, 2019. paper code
Victor Veitch, Dhanya Sridhar, David M. Blei.
-
Counterfactual Story Reasoning and Generation, arXIv, 2019. paper
Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark, Yejin Choi.
-
How to Make Causal Inferences Using Texts, arXIv, 2018. paper
Naoki Egami, Christian J. Fong, Justin Grimmer, Margaret E. Roberts, Brandon M. Stewart.
-
Targeted learning in observational studies with multi-level treatments: An evaluation of antipsychotic drug treatment safety for patients with serious mental illnesses, arXIv, 2022. paper code
Jason Poulos, Marcela Horvitz-Lennon, Katya Zelevinsky, Thomas Huijskens, Pooja Tyagi, Jiaju Yan, Jordi Diaz, Tudor Cristea-Platon, Sharon-Lise Normand.
-
NeurIPS 2021 Workshop link
-
UAI 2021 Workshop link
-
KDD 2021 Workshop link
-
ICML 2021 Workshop link
-
EMNLP 2021 Workshop link
-
NeurIPS 2020 Workshop link
-
NeurIPS 2019 Workshop link
-
NIPS 2018 Workshop link
-
NIPS 2017 Workshop link
-
NIPS 2016 Workshop link
-
NIPS 2013 Workshop link
- PMLR, Volume 6: Causality: Objectives and Assessment, 12 December 2008, Whistler, Canada link
-
Causal Inference 360: A Python package for inferring causal effects from observational data. link
-
WhyNot: A Python package connecting tools from causal inference and reinforcement learning with a range of complex simulators link
-
EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation link
-
Uplift modeling and causal inference with machine learning algorithms link
-
CS7792 - Counterfactual Machine Learning link
-
Introduction to Causal Inference link
-
Machine Learning & Causal Inference: A Short Course link
-
KDD 2020: Lecture Style Tutorials: Casual Inference Meets Machine Learning link
- Causality and Machine Learning: Microsoft Research link
-
An index of algorithms for learning causality with data link
-
An index of datasets that can be used for learning causality link
-
Papers about Causal Inference and Language link
- Causal Machine Learning link