Skip to content

A light-weight matrix operations library for C#, supports matrix addition, matrix mulitplication, vector addition, dot product, cross product and using CPU cores-corresponding threads as many as possible to parallelly compute result. Beside that, matrix operations can be writen in easy understanding way like regular math expression.

Notifications You must be signed in to change notification settings

jsw7524/MatrixOperations

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JSW MatrixOperations

nuget download link

A light-weight matrix operations library for C#, supports matrix addition, matrix mulitplication, vector addition, dot product, cross product and using CPU cores-corresponding threads as many as possible to parallelly compute result. Beside that, matrix operations can be writen in easy understanding way like regular math expression.

fluent matrix operations

        public void TestMethod()
        {
            Matrix identityMatrix1 = MatrixHelper.GetIdentityMatrix(2);
            Matrix result = identityMatrix1 + 2.0 * identityMatrix1 + 3.0 * identityMatrix1;
        }

fluent vector operations

        public void TestMethod()
        {
            Vector a = new Vector(new double[3] { 1, 2, 3 });
            Vector b = new Vector(new double[3] { 4, 5, 6 });
            Vector result = 2.0 * a + 3.0 * b;
        }

vector addition

        public void TestMethod()
        {
            Vector a = new Vector(new double[3] { 1, 2, 3 });
            Vector b = new Vector(new double[3] { 4, 5, 6 });
            Vector result = a + b;
        }

Get Vector elemet

        public void TestMethod()
        {
            Vector a = new Vector(new double[3] { 1, 2, 3 });
            Vector b = new Vector(new double[3] { 4, 5, 6 });
            Vector result = a + b;
            Assert.AreEqual(5.0, result[0]);
            Assert.AreEqual(7.0, result[1]);
            Assert.AreEqual(9.0, result[2]);
        }

Get Matrix elemet

        public void TestMethod()
        {
            Matrix matrixA = new Matrix(new double[2, 2] { { 0, 1 }, { 0, 0 } });
            Matrix matrixB = new Matrix(new double[2, 2] { { 0.0, 0.0 }, { 1.0, 0.0 } });
            Matrix result = matrixA + matrixB;
            Assert.AreEqual(0.0, result[0, 0]);
            Assert.AreEqual(1.0, result[0, 1]);
            Assert.AreEqual(1.0, result[1, 0]);
            Assert.AreEqual(0.0, result[1, 1]);
        }

Create 3x3 Identity Matrix

        public void TestMethod()
        {
            Matrix identityMatrix1 = MatrixHelper.GetIdentityMatrix(3);
        }

Matrix transpose

        public void TestMethod()
        {
            Matrix matrixA = new Matrix(new double[2, 3] { { 1, 2, 3 }, { 4, 5, 6 } });
            Matrix result = matrixA.T;
        }

2x2 Matrix Mulitplication

        public void TestMethod()
        {
            Matrix identityMatrix = MatrixHelper.GetIdentityMatrix(2);
            Matrix randomMatrix = MatrixHelper.GetRandomMatrix(2, 2);
            Matrix result = identityMatrix * randomMatrix;
        }

1000x1000 Matrix Mulitplication loaded from Json format

        public void TestMethod()
        {
            Matrix matrix1 = MatrixHelper.MatrixFromJson(File.ReadAllText("MatrixA1000"));
            Matrix matrix2 = MatrixHelper.MatrixFromJson(File.ReadAllText("MatrixB1000"));
            Matrix result = matrix1 * matrix2;
        }

dot product

        public void TestMethod()
        {
            Vector a = new Vector(new double[3] { 1, 2, 3 });
            Vector b = new Vector(new double[3] { 4, 5, 6 });
            double result = a * b;
        }

linear transformation

        public void TestMethod()
        {
            Matrix matrixA = new Matrix(new double[2, 3] { { 1, 0, -1 }, { 3, 1, 2 } });
            Vector b = new Vector(new double[3] { 1, 2, 3 });
            Vector result = matrixA * b;
        }

Determinant

        public void TestMethod()
        {
            Matrix m = new Matrix(new double[,] { { 4, 3, 2, 2 }, { 0, 1, -3, 3 }, { 0, -1, 3, 3 }, { 0, 3, 1, 1 } });
            double result = m.Determinant();
            Assert.AreEqual(-240.0, result);
        }

Cofactor Matrix

        public void TestMethod()
        {
            Matrix m = new Matrix(new double[,] { { 1, 2, 3 }, { 0, 4, 5 }, { 1, 0, 6 } });
            Matrix result = m.CofactorMatrix();
            Assert.AreEqual(24.0, result[0, 0]);
            Assert.AreEqual(3.0, result[1, 1]);
            Assert.AreEqual(-5.0, result[2, 1]);
        }

Inverse Matrix

        public void TestMethod()
        {
            Matrix m = new Matrix(new double[,] { { 1, 2, 3 }, { 0, 1, 5 }, { 5, 6, 0 } });
            Matrix result = m.InverseMatrix();
            Assert.AreEqual(-6.0, result[0, 0]);
            Assert.AreEqual(-3.0, result[1, 1]);
            Assert.AreEqual(-1, result[2, 0]);
            Assert.AreEqual(5.0, result[1, 0]);
        }

RowSwap

        public void TestMethod()
        {
            Matrix m = new Matrix(new double[,] { { 1, 2, 3 }, { 0, 1, 5 }, { 5, 6, 0 } });
            Matrix result = MatrixHelper.RowSwap(m, 1, 2);
        }

ColumnSwap

        public void TestMethod()
        {
            Matrix m = new Matrix(new double[,] { { 1, 2, 3 }, { 0, 1, 5 }, { 5, 6, 0 } });
            Matrix result = MatrixHelper.ColumnSwap(m, 1, 2);
        }

isSingular

        public void TestMethod()
        {
            Matrix matrixA = new Matrix(new double[,] { { -1, 2, 0, 0 }, { 2, -4, 1, 3 }, { 1, -2, 3, 9 }, { -2, 4, 2, 6 } });
            Assert.AreEqual(true, matrixA.isSingular);
        }

GaussianElimination

        public void TestMethod()
        {
            Matrix matrixA = new Matrix(new double[,] { { 1, -1, 1, -2 }, { 4, -2, 1, -1 }, { 1, -3, 2, -7 } });
            Matrix result = (matrixA.GaussianElimination());
        }

GaussianJordanElimination

        public void TestMethod()
        {
            Matrix matrixA = new Matrix(new double[,] { { 1, -1, 1, -2 }, { 4, -2, 1, -1 }, { 1, -3, 2, -7 } });
            Matrix result = matrixA.GaussianJordan();
            Assert.AreEqual(1, result[0, 3]);
            Assert.AreEqual(2, result[1, 3]);
            Assert.AreEqual(-1, result[2, 3]);
        }

GetRows

        public void TestMethod()
        {
            Matrix m = new Matrix(new double[,] { { 1, 2, 3 }, { 0, 1, 5 }, { 5, 6, 0 } });
            List<Vector> rows = m.GetRows().ToList();
        }

GetColumns

        public void TestMethod()
        {
            Matrix m = new Matrix(new double[,] { { 1, 2, 3 }, { 0, 1, 5 }, { 5, 6, 0 } });
            List<Vector> columns=m.GetColumns().ToList();
        }

About

A light-weight matrix operations library for C#, supports matrix addition, matrix mulitplication, vector addition, dot product, cross product and using CPU cores-corresponding threads as many as possible to parallelly compute result. Beside that, matrix operations can be writen in easy understanding way like regular math expression.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages