-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
pnsuau
committed
Jul 4, 2023
1 parent
963b5de
commit 350578e
Showing
5 changed files
with
1,630 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
#!/usr/bin/env python3 | ||
# Portions Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
|
||
# This source code is licensed under the license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
|
||
import einops | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
class Normalize(nn.Module): | ||
def __init__(self, dim: int) -> None: | ||
super().__init__() | ||
self.dim = dim | ||
|
||
def forward(self, x): | ||
return torch.nn.functional.normalize(x, dim=self.dim, p=2) | ||
|
||
|
||
class LearnableLogitScaling(nn.Module): | ||
def __init__( | ||
self, | ||
logit_scale_init: float = 1 / 0.07, | ||
learnable: bool = True, | ||
max_logit_scale: float = 100, | ||
) -> None: | ||
super().__init__() | ||
self.max_logit_scale = max_logit_scale | ||
self.logit_scale_init = logit_scale_init | ||
self.learnable = learnable | ||
log_logit_scale = torch.ones([]) * np.log(self.logit_scale_init) | ||
if learnable: | ||
self.log_logit_scale = nn.Parameter(log_logit_scale) | ||
else: | ||
self.register_buffer("log_logit_scale", log_logit_scale) | ||
|
||
def forward(self, x): | ||
return torch.clip(self.log_logit_scale.exp(), max=self.max_logit_scale) * x | ||
|
||
def extra_repr(self): | ||
st = ( | ||
f"logit_scale_init={self.logit_scale_init},learnable={self.learnable}," | ||
f" max_logit_scale={self.max_logit_scale}" | ||
) | ||
return st | ||
|
||
|
||
class EinOpsRearrange(nn.Module): | ||
def __init__(self, rearrange_expr: str, **kwargs) -> None: | ||
super().__init__() | ||
self.rearrange_expr = rearrange_expr | ||
self.kwargs = kwargs | ||
|
||
def forward(self, x): | ||
assert isinstance(x, torch.Tensor) | ||
return einops.rearrange(x, self.rearrange_expr, **self.kwargs) | ||
|
||
|
||
class VerboseNNModule(nn.Module): | ||
""" | ||
Wrapper around nn.Module that prints registered buffers and parameter names. | ||
""" | ||
|
||
@staticmethod | ||
def get_readable_tensor_repr(name: str, tensor: torch.Tensor) -> str: | ||
st = ( | ||
"(" | ||
+ name | ||
+ "): " | ||
+ "tensor(" | ||
+ str(tuple(tensor[1].shape)) | ||
+ ", requires_grad=" | ||
+ str(tensor[1].requires_grad) | ||
+ ")\n" | ||
) | ||
return st | ||
|
||
def extra_repr(self) -> str: | ||
named_modules = set() | ||
for p in self.named_modules(): | ||
named_modules.update([p[0]]) | ||
named_modules = list(named_modules) | ||
|
||
string_repr = "" | ||
for p in self.named_parameters(): | ||
name = p[0].split(".")[0] | ||
if name not in named_modules: | ||
string_repr += self.get_readable_tensor_repr(name, p) | ||
|
||
for p in self.named_buffers(): | ||
name = p[0].split(".")[0] | ||
string_repr += self.get_readable_tensor_repr(name, p) | ||
|
||
return string_repr | ||
|
||
|
||
def cast_if_src_dtype( | ||
tensor: torch.Tensor, src_dtype: torch.dtype, tgt_dtype: torch.dtype | ||
): | ||
updated = False | ||
if tensor.dtype == src_dtype: | ||
tensor = tensor.to(dtype=tgt_dtype) | ||
updated = True | ||
return tensor, updated | ||
|
||
|
||
class QuickGELU(nn.Module): | ||
# From https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/clip/model.py#L166 | ||
def forward(self, x: torch.Tensor): | ||
return x * torch.sigmoid(1.702 * x) | ||
|
||
|
||
class SelectElement(nn.Module): | ||
def __init__(self, index) -> None: | ||
super().__init__() | ||
self.index = index | ||
|
||
def forward(self, x): | ||
assert x.ndim >= 3 | ||
return x[:, self.index, ...] | ||
|
||
|
||
class SelectEOSAndProject(nn.Module): | ||
""" | ||
Text Pooling used in OpenCLIP | ||
""" | ||
|
||
def __init__(self, proj: nn.Module) -> None: | ||
super().__init__() | ||
self.proj = proj | ||
|
||
def forward(self, x, seq_len): | ||
assert x.ndim == 3 | ||
# x is of shape B x L x D | ||
# take features from the eot embedding (eot_token is the highest number in each sequence) | ||
x = x[torch.arange(x.shape[0]), seq_len] | ||
x = self.proj(x) | ||
return x |
Oops, something went wrong.