Skip to content

Code for paper "Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality".

License

Notifications You must be signed in to change notification settings

johannesjung/lid_adversarial_subspace_detection

 
 

Repository files navigation

Code for paper "Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality". https://arxiv.org/abs/1801.02613

1. Pre-train DNN models:

python train_model.py -d mnist -e 50 -b 128

2. Craft adversarial examples:

python craft_adv_samples.py -d cifar -a cw-l2 -b 100

3.Extract detection characteristics:

python extract_characteristics.py -d cifar -a cw-l2 -r lid -k 20 -b 100

4. Train simple detectors:

python detect_adv_examples.py -d cifar -a fgsm -t cw-l2 -r lid

Requirements:

numpy, scipy, tqdm, sklearn, matplotlib, tensorflow >= 1.0, Keras >= 2.0, cleverhans >= 1.0.0 (may need extra change to pass in keras learning rate)

Kernal Density and Bayesian Uncertainty are from https://github.com/rfeinman/detecting-adversarial-samples ("Detecting Adversarial Samples from Artifacts" (Feinman et al. 2017))

About

Code for paper "Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%