Skip to content

jjlinghu/test

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

StreamPETR with 3dppe Extension

Introduction

This repository is an implementation of StreamPETR with 3dppe.


Getting Started

  1. Prepare nuScenes dataset and generate 2D annotations and temporal information for training & evaluation. (see streamPETR)

  2. Conda env

conda create -n xxx python=3.8 -y
conda activate xxx
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

pip install flash-attn==0.2.2  # (Tesla v100 is not compatible)

pip install mmcv-full==1.6.0
pip install mmdet==2.28.2
pip install mmsegmentation==0.30.0
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
git checkout v1.0.0rc6 
pip install -v -e .

Note : make sure that numba 0.53.0 numpy 1.23.5
(if not, reinstall numba==0.53.0).

Catalogue: tree -d -L 1

.
├── ckpts
├── data
├── mmdetection3d
├── projects
└── tools
  1. Train & Infer
tools/dist_train.sh [-config] [-num_gpus]
tools/dist_test.sh [-config] [-model] [-num_gpus] --eval bbox

Results on NuScenes Val Set

Model Setting Pretrain Lr Schd Training Time NDS mAP Config Download
StreamPETR V2-99-900q-800x320 FCOS3D 24ep 13h 57.1 48.3 config model/log
Stream3dppe V2-99-900q-800x320 FCOS3D 24ep 16h 58.45/58.45 49.95/50.04 config model1,model2)/(log1,log2)
Stream3dppe_gt_detph V2-99-900q-800x320 FCOS3D 24ep 22h 61.7 55.3 config model/log
StreamPETR V2-99-900q-1600x640 FCOS3D 24ep
Stream3DPPE V2-99-900q-1600x640 FCOS3D 24ep

Note : Stream3dppe is trained on 4 x RTX 3090 with bs4 ,while Stream3dppe_gt_detph is trained on 4 x RTX 2080Ti with bs2 .

More result please refer to https://github.com/drilistbox/3DPPE.


Acknowledgement

Many thanks to the authors of PETR and StreamPETR.


Citation

If you find this project useful for your research, please consider citing:

@article{shu20233DPPE,
  title={3DPPE: 3D Point Positional Encoding for Multi-Camera 3D Object Detection Transformers},
  author={Shu, Changyong and Deng, Jiajun and Yu, Fisher and Liu, Yifan},
  journal={arXiv preprint arXiv:2211.14710},
  year={2023}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published