forked from nipreps/eddymotion
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
8 changed files
with
774 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- | ||
# vi: set ft=python sts=4 ts=4 sw=4 et: | ||
# | ||
# Copyright 2022 The NiPreps Developers <[email protected]> | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# We support and encourage derived works from this project, please read | ||
# about our expectations at | ||
# | ||
# https://www.nipreps.org/community/licensing/ | ||
# | ||
import nibabel as nib | ||
import numpy as np | ||
from eddymotion.model.utils import ( | ||
extract_dmri_shell, | ||
find_shelling_scheme, | ||
is_positive_definite, | ||
# update_covariance1, | ||
# update_covariance2, | ||
) | ||
|
||
|
||
def test_is_positive_definite(): | ||
|
||
matrix = np.array([[4, 1, 2], [1, 3, 1], [2, 1, 5]]) | ||
assert is_positive_definite(matrix) | ||
|
||
matrix = np.array([[4, 1, 2], [1, -3, 1], [2, 1, 5]]) | ||
assert not is_positive_definite(matrix) | ||
|
||
|
||
def test_update_covariance(): | ||
|
||
_K = np.random.rand(5, 5) | ||
_thpar = [0.5, 1.0, 2.0] | ||
update_covariance1(_K, _thpar) | ||
print(_K) # Updated covariance matrix | ||
|
||
|
||
def test_extract_dmri_shell(): | ||
|
||
# dMRI volume with 5 gradients | ||
bvals = np.asarray([0, 1980, 12, 990, 2000]) | ||
bval_count = len(bvals) | ||
vols_size = (10, 15, 20) | ||
dwi = np.ones((*vols_size, bval_count)) | ||
bvecs = np.ones((bval_count, 3)) | ||
# Set all i-th gradient dMRI volume data and bvecs values to i | ||
for i in range(bval_count): | ||
dwi[..., i] = i | ||
bvecs[i, :] = i | ||
dwi_img = nib.Nifti1Image(dwi, affine=np.eye(4)) | ||
|
||
bvals_to_extract = [0, 2000] | ||
tol = 15 | ||
|
||
expected_indices = np.asarray([0, 2, 4]) | ||
expected_shell_data = np.stack([i*np.ones(vols_size) for i in expected_indices], axis=-1) | ||
expected_shell_bvals = np.asarray([0, 12, 2000]) | ||
expected_shell_bvecs = np.asarray([[i]*3 for i in expected_indices]) | ||
|
||
( | ||
obtained_indices, | ||
obtained_shell_data, | ||
obtained_shell_bvals, | ||
obtained_shell_bvecs | ||
) = extract_dmri_shell( | ||
dwi_img, bvals, bvecs, bvals_to_extract=bvals_to_extract, tol=tol) | ||
|
||
assert np.array_equal(obtained_indices, expected_indices) | ||
assert np.array_equal(obtained_shell_data, expected_shell_data) | ||
assert np.array_equal(obtained_shell_bvals, expected_shell_bvals) | ||
assert np.array_equal(obtained_shell_bvecs, expected_shell_bvecs) | ||
|
||
bvals = np.asarray([0, 1010, 12, 990, 2000]) | ||
bval_count = len(bvals) | ||
vols_size = (10, 15, 20) | ||
dwi = np.ones((*vols_size, bval_count)) | ||
bvecs = np.ones((bval_count, 3)) | ||
# Set all i-th gradient dMRI volume data and bvecs values to i | ||
for i in range(bval_count): | ||
dwi[..., i] = i | ||
bvecs[i, :] = i | ||
dwi_img = nib.Nifti1Image(dwi, affine=np.eye(4)) | ||
|
||
bvals_to_extract = [0, 1000] | ||
tol = 20 | ||
|
||
expected_indices = np.asarray([0, 1, 2, 3]) | ||
expected_shell_data = np.stack([i*np.ones(vols_size) for i in expected_indices], axis=-1) | ||
expected_shell_bvals = np.asarray([0, 1010, 12, 990]) | ||
expected_shell_bvecs = np.asarray([[i]*3 for i in expected_indices]) | ||
|
||
( | ||
obtained_indices, | ||
obtained_shell_data, | ||
obtained_shell_bvals, | ||
obtained_shell_bvecs | ||
) = extract_dmri_shell( | ||
dwi_img, bvals, bvecs, bvals_to_extract=bvals_to_extract, tol=tol) | ||
|
||
assert np.array_equal(obtained_indices, expected_indices) | ||
assert np.array_equal(obtained_shell_data, expected_shell_data) | ||
assert np.array_equal(obtained_shell_bvals, expected_shell_bvals) | ||
assert np.array_equal(obtained_shell_bvecs, expected_shell_bvecs) | ||
|
||
|
||
def test_find_shelling_scheme(): | ||
|
||
tol = 20 | ||
bvals = np.asarray([0, 0]) | ||
expected_shells = np.asarray([0]) | ||
expected_bval_centroids = np.asarray([0, 0]) | ||
obtained_shells, obtained_bval_centroids = find_shelling_scheme( | ||
bvals, tol=tol) | ||
|
||
assert np.array_equal(obtained_shells, expected_shells) | ||
assert np.array_equal(obtained_bval_centroids, expected_bval_centroids) | ||
|
||
bvals = np.asarray([ | ||
5, 300, 300, 300, 300, 300, 305, 1005, 995, 1000, 1000, 1005, 1000, | ||
1000, 1005, 995, 1000, 1005, 5, 995, 1000, 1000, 995, 1005, 995, 1000, | ||
995, 995, 2005, 2000, 2005, 2005, 1995, 2000, 2005, 2000, 1995, 2005, 5, | ||
1995, 2005, 1995, 1995, 2005, 2005, 1995, 2000, 2000, 2000, 1995, 2000, 2000, | ||
2005, 2005, 1995, 2005, 2005, 1990, 1995, 1995, 1995, 2005, 2000, 1990, 2010, 5 | ||
]) | ||
expected_shells = np.asarray([5., 300.83333333, 999.5, 2000.]) | ||
expected_bval_centroids = ([ | ||
5., 300.83333333, 300.83333333, 300.83333333, 300.83333333, 300.83333333, 300.83333333, 999.5, 999.5, 999.5, 999.5, 999.5, 999.5, | ||
999.5, 999.5, 999.5, 999.5, 999.5, 5., 999.5, 999.5, 999.5, 999.5, 999.5, 999.5, 999.5, | ||
999.5, 999.5, 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 5., | ||
2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., | ||
2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 2000., 5. | ||
]) | ||
obtained_shells, obtained_bval_centroids = find_shelling_scheme( | ||
bvals, tol=tol) | ||
|
||
# ToDo | ||
# Giving a tolerance of 15 this fails because it finds 5 clusters | ||
assert np.allclose(obtained_shells, expected_shells) | ||
assert np.allclose(obtained_bval_centroids, expected_bval_centroids) | ||
|
||
bvals = np.asarray([0, 1980, 12, 990, 2000]) | ||
expected_shells = np.asarray([6, 990, 1980, 2000]) | ||
expected_bval_centroids = np.asarray([6, 1980, 6, 990, 2000]) | ||
obtained_shells, obtained_bval_centroids = find_shelling_scheme( | ||
bvals, tol=tol) | ||
|
||
assert np.allclose(obtained_shells, expected_shells) | ||
assert np.allclose(obtained_bval_centroids, expected_bval_centroids) | ||
|
||
bvals = np.asarray([0, 1010, 12, 990, 2000]) | ||
tol = 60 | ||
expected_shells = np.asarray([6, 1000, 2000]) | ||
expected_bval_centroids = np.asarray([6, 1000, 6, 1000, 2000]) | ||
obtained_shells, obtained_bval_centroids = find_shelling_scheme(bvals, tol) | ||
|
||
assert np.allclose(obtained_shells, expected_shells) | ||
assert np.allclose(obtained_bval_centroids, expected_bval_centroids) |
Oops, something went wrong.