Skip to content
This repository has been archived by the owner on Mar 4, 2024. It is now read-only.

jgadbois17/Neural_Network_Versatility_Performance

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Neural Network Versatility and Performance

This repository contains code, data, and results for my thesis culminating activity to satisfy requirements for my graduate program.

Note: All code is done in Python 3.7.

Topic Information

The topic considers the versatility of neural networks and various architectures and their performance in comparison to traditional statistical models for digital signal data. The two specific types of data used are image data and one-dimensional sequential data and the experimental projects include image classification, image segmentation, time series forecasting, and anomaly detection. The models implemented for each task are provided below.

Repository Outline

  • dspML: folder containing all of the functions and classes used for experimentation

    • datasets: folder containing all datasets used for the different topics
    • data: contains functions to load the datasets from the base directory
    • preprocessing: contains preprocessing functions for both image and sequential data
    • plot: contains functions and classes for plotting data and results
    • models: folder containing models implemented organized by image and sequence tasks including functions that go along with specific models
    • evaluation: constains evaluation functions for the different tasks
    • utils: contains a few random functions that I couldn't decide what script to include them in
  • experiments: folder containing one folder for each sub-topic included in the thesis where each topic folder contains python scripts of each experiment for each model

  • notebooks: folder containing one Jupyter notebook for each sub-topic to bring the whole process together for all models implemented

  • exploratory: folder containing random exploratory python scripts that were not included in the experiments

About

Applied statistics master's thesis code and data.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published