Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Memory leaks #352

Merged
merged 8 commits into from
Dec 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -55,12 +55,13 @@ def array(self, mode="r") -> Array:
assert num_channels is None, "Input labels cannot have a channel dimension"

def group_array(data):
out = da.zeros((len(self.groupings), *array.physical_shape), dtype=np.uint8)
for i, (_, group_ids) in enumerate(self.groupings):
if len(group_ids) == 0:
out[i] = data != self.background
else:
out[i] = da.isin(data, group_ids)
groups = [
da.isin(data, group_ids)
if len(group_ids) > 0
else data != self.background
for _, group_ids in self.groupings
]
out = da.stack(groups, axis=0)
return out

data = group_array(array.data)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@

from typing import List, Dict, Optional
from funlib.persistence import Array
import numpy as np
import dask.array as da


Expand Down Expand Up @@ -45,18 +44,15 @@ class ConcatArrayConfig(ArrayConfig):
def array(self, mode: str = "r") -> Array:
arrays = [config.array(mode) for _, config in self.source_array_configs.items()]

out_data = da.stack([array.data for array in arrays], axis=0)
out_array = Array(
da.zeros(len(arrays), *arrays[0].physical_shape, dtype=arrays[0].dtype),
out_data,
offset=arrays[0].offset,
voxel_size=arrays[0].voxel_size,
axis_names=["c^"] + arrays[0].axis_names,
units=arrays[0].units,
)

def set_channels(data):
for i, array in enumerate(arrays):
data[i] = array.data[:]
return data

out_array.lazy_op(set_channels)
# callable lazy op so funlib.persistence doesn't try to recoginize this data as writable
out_array.lazy_op(lambda data: data)
return out_array
Original file line number Diff line number Diff line change
Expand Up @@ -30,14 +30,14 @@ def array(self, mode: str = "r") -> Array:
assert num_channels_from_array(array) is not None

out_array = Array(
da.zeros(*array.physical_shape, dtype=array.dtype),
da.zeros(array.physical_shape, dtype=array.dtype),
offset=array.offset,
voxel_size=array.voxel_size,
axis_names=array.axis_names[1:],
units=array.units,
)

out_array.data = da.maximum(array.data, axis=0)
out_array.data = da.max(array.data, axis=0)

# mark data as non-writable
out_array.lazy_op(lambda data: data)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,26 @@
from funlib.geometry import Coordinate
from funlib.persistence import Array

from xarray_multiscale.multiscale import downscale_dask
from xarray_multiscale import windowed_mean
import numpy as np
import dask.array as da

from typing import Sequence


def adjust_shape(array: da.Array, scale_factors: Sequence[int]) -> da.Array:
"""
Crop array to a shape that is a multiple of the scale factors.
This allows for clean downsampling.
"""
misalignment = np.any(np.mod(array.shape, scale_factors))
if misalignment:
new_shape = np.subtract(array.shape, np.mod(array.shape, scale_factors))
slices = tuple(slice(0, s) for s in new_shape)
array = array[slices]
return array


@attr.s
class ResampledArrayConfig(ArrayConfig):
Expand Down Expand Up @@ -37,7 +57,27 @@ class ResampledArrayConfig(ArrayConfig):
metadata={"help_text": "The order of the interpolation!"}
)

def preprocess(self, array: Array) -> Array:
"""
Preprocess an array by resampling it to the desired voxel size.
"""
if self.downsample is not None:
downsample = Coordinate(self.downsample)
return Array(
data=downscale_dask(
adjust_shape(array.data, downsample),
windowed_mean,
scale_factors=downsample,
),
offset=array.offset,
voxel_size=array.voxel_size * downsample,
axis_names=array.axis_names,
units=array.units,
)
elif self.upsample is not None:
raise NotImplementedError("Upsampling not yet implemented")

def array(self, mode: str = "r") -> Array:
# This is non trivial. We want to upsample or downsample the source
# array lazily. Not entirely sure how to do this with dask arrays.
raise NotImplementedError()
source_array = self.source_array_config.array(mode)

return self.preprocess(source_array)
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
from dacapo.experiments.arraytypes.probabilities import ProbabilityArray
from .predictor import Predictor
from dacapo.experiments import Model
from dacapo.experiments.arraytypes import DistanceArray
from dacapo.tmp import np_to_funlib_array
from dacapo.utils.balance_weights import balance_weights

Expand Down Expand Up @@ -394,6 +393,7 @@ def __find_boundaries(self, labels):
# bound.: 00000001000100000001000 2n - 1

logger.debug(f"computing boundaries for {labels.shape}")
labels = labels.astype(np.uint8)

dims = len(labels.shape)
in_shape = labels.shape
Expand Down
2 changes: 2 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,7 @@ dependencies = [
"upath",
"boto3",
"matplotlib",
"xarray-multiscale",
]

# extras
Expand Down Expand Up @@ -201,6 +202,7 @@ module = [
"napari.*",
"empanada.*",
"IPython.*",
"xarray_multiscale.*"
]
ignore_missing_imports = true

Expand Down
1 change: 0 additions & 1 deletion tests/components/test_gp_arraysource.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,5 @@ def test_gp_dacapo_array_source(array_config):
batch = source_node.request_batch(request)
data = batch[key].data
if data.dtype == bool:
raise ValueError("Data should not be bools")
data = data.astype(np.uint8)
assert (data - array[array.roi]).sum() == 0
32 changes: 32 additions & 0 deletions tests/components/test_preprocessing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
from dacapo.experiments.datasplits.datasets.arrays.resampled_array_config import (
ResampledArrayConfig,
)

import numpy as np
from funlib.persistence import Array
from funlib.geometry import Coordinate


def test_resample():
# test downsampling arrays with shape 10 and 11 by a factor of 2 to test croping works
for top in [11, 12]:
arr = Array(np.array(np.arange(1, top)), offset=(0,), voxel_size=(3,))
resample_config = ResampledArrayConfig(
"test_resample", None, upsample=None, downsample=(2,), interp_order=1
)
resampled = resample_config.preprocess(arr)
assert resampled.voxel_size == Coordinate((6,))
assert resampled.shape == (5,)
assert np.allclose(resampled[:], np.array([1.5, 3.5, 5.5, 7.5, 9.5]))

# test 2D array
arr = Array(
np.array(np.arange(1, 11).reshape(5, 2).T), offset=(0, 0), voxel_size=(3, 3)
)
resample_config = ResampledArrayConfig(
"test_resample", None, upsample=None, downsample=(2, 1), interp_order=1
)
resampled = resample_config.preprocess(arr)
assert resampled.voxel_size == Coordinate(6, 3)
assert resampled.shape == (1, 5)
assert np.allclose(resampled[:], np.array([[1.5, 3.5, 5.5, 7.5, 9.5]]))
Loading