Skip to content

Commit

Permalink
unet examples
Browse files Browse the repository at this point in the history
  • Loading branch information
zouinkhim committed Nov 11, 2024
1 parent d0133fe commit 460cf2a
Show file tree
Hide file tree
Showing 3 changed files with 128 additions and 2 deletions.
4 changes: 2 additions & 2 deletions docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,8 @@
# -- Project information -----------------------------------------------------

project = "DaCapo"
copyright = "2024, Caroline Malin-Mayor, Jeff Rhoades, Marwan Zouinkhi, William Patton, David Ackerman, Jan Funke"
author = "Caroline Malin-Mayor, Jeff Rhoades, Marwan Zouinkhi, William Patton, David Ackerman, Jan Funke"
copyright = "2024, William Patton, Jeff Rhoades, Marwan Zouinkhi, David Ackerman, Caroline Malin-Mayor, Jan Funke"
author = " William Patton, Jeff Rhoades, Marwan Zouinkhi, David Ackerman, Caroline Malin-Mayor, Jan Funke"


# -- General configuration ---------------------------------------------------
Expand Down
1 change: 1 addition & 0 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
overview
install
notebooks/minimal_tutorial
unet_architectures
tutorial
docker
aws
Expand Down
125 changes: 125 additions & 0 deletions docs/source/unet_architectures.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
UNet Models
===========

This section explains how to configure and use UNet models in DaCapo. Several configurations for different types of UNet architectures are demonstrated below.

Overview
--------

UNet is a popular architecture for image segmentation tasks, particularly in biomedical imaging. DaCapo provides support for configuring various types of UNet models with customizable parameters.

Examples
--------

Here are some examples of UNet configurations:

1. **Upsample UNet**

.. code-block:: python
from dacapo.experiments.architectures import CNNectomeUNetConfig
from funlib.geometry import Coordinate
architecture_config = CNNectomeUNetConfig(
name="upsample_unet",
input_shape=Coordinate(216, 216, 216),
eval_shape_increase=Coordinate(72, 72, 72),
fmaps_in=1,
num_fmaps=12,
fmaps_out=72,
fmap_inc_factor=6,
downsample_factors=[(2, 2, 2), (3, 3, 3), (3, 3, 3)],
constant_upsample=True,
upsample_factors=[(2, 2, 2)],
)
2. **Yoshi UNet**

.. code-block:: python
yoshi_unet_config = CNNectomeUNetConfig(
name="yoshi-unet",
input_shape=Coordinate(188, 188, 188),
eval_shape_increase=Coordinate(72, 72, 72),
fmaps_in=1,
num_fmaps=12,
fmaps_out=72,
fmap_inc_factor=6,
downsample_factors=[(2, 2, 2), (2, 2, 2), (2, 2, 2)],
constant_upsample=True,
upsample_factors=[],
)
3. **Attention Upsample UNet**

.. code-block:: python
attention_upsample_config = CNNectomeUNetConfig(
name="attention-upsample-unet",
input_shape=Coordinate(216, 216, 216),
eval_shape_increase=Coordinate(72, 72, 72),
fmaps_in=1,
num_fmaps=12,
fmaps_out=72,
fmap_inc_factor=6,
downsample_factors=[(2, 2, 2), (3, 3, 3), (3, 3, 3)],
constant_upsample=True,
upsample_factors=[(2, 2, 2)],
use_attention=True,
)
4. **2D UNet**

.. code-block:: python
architecture_config = CNNectomeUNetConfig(
name="2d_unet",
input_shape=(2, 132, 132),
eval_shape_increase=(8, 32, 32),
fmaps_in=2,
num_fmaps=8,
fmaps_out=8,
fmap_inc_factor=2,
downsample_factors=[(1, 4, 4), (1, 4, 4)],
kernel_size_down=[[(1, 3, 3)] * 2] * 3,
kernel_size_up=[[(1, 3, 3)] * 2] * 2,
constant_upsample=True,
padding="valid",
)
5. **UNet with Batch Normalization**

.. code-block:: python
architecture_config = CNNectomeUNetConfig(
name="unet_norm",
input_shape=Coordinate(216, 216, 216),
eval_shape_increase=Coordinate(72, 72, 72),
fmaps_in=1,
num_fmaps=2,
fmaps_out=2,
fmap_inc_factor=2,
downsample_factors=[(2, 2, 2), (3, 3, 3), (3, 3, 3)],
constant_upsample=True,
upsample_factors=[],
batch_norm=False,
)
Configuration Parameters
------------------------

- **name**: A unique identifier for the configuration.
- **input_shape**: The shape of the input data.
- **eval_shape_increase**: Increase in shape during evaluation.
- **fmaps_in**: Number of input feature maps.
- **num_fmaps**: Number of feature maps in the first layer.
- **fmaps_out**: Number of output feature maps.
- **fmap_inc_factor**: Factor by which feature maps increase in each layer.
- **downsample_factors**: Factors by which the input is downsampled at each layer.
- **upsample_factors**: Factors by which the input is upsampled at each layer.
- **constant_upsample**: Whether to use constant upsampling.
- **use_attention**: Whether to use attention mechanisms.
- **batch_norm**: Whether to use batch normalization.
- **padding**: Padding mode for convolutional layers.

This page should serve as a reference for configuring UNet models in DaCapo. Adjust the parameters as per your dataset and task requirements.

0 comments on commit 460cf2a

Please sign in to comment.