To run the code, use Docker:
cd Docker
docker build -t "pytorch_extended:20.02"
docker run ...
Alternatively, use the environment.yml with anaconda.
-
Download the data and checkpoints from here: https://figshare.com/s/dde2f78958173c23aee4. There are two big Zip files: SensorToDryspot, SensorToFlowFront. To recreate the experiments from the paper, we need both.
- The SensorToDryspot dataset can be used for:
- Feedforward baseline
- Finetuning FlowFrontNet with a pretrained Deconv / Conv
- The SensorToFlowFront dataset can be used to train the Deconv / Conv Network to produce FlowFrontImages
- The SensorToDryspot dataset can be used for:
-
Unzip those files in a certain
data_path
:SensorToFlowFront
andSensorToDrySpot
-
Start Trainings:
-
Start the following script for 1140 sensors to flowfront:
python3 -u ModelTrainerScripts.model_trainer_sensor_1140_to_flow.py --demo data_path/SensorToFlowFront
-
To use the fine-tuned model for binary classification:
python3 -u ModelTrainerScripts.model_trainer_sensor_1140_to_dryspot.py --demo data_path/SensorToDrySpot --checkpoint_path checkpoint_path
-
For the baseline, run:
python3 -u ModelTrainerScripts.model_trainer_sensor_1140_dryspot_end_to_end_dense.py --demo data_path/SensorToDrySpot
-
-
Evaluation:
-
Start the following script for 1140 sensors to flowfront:
python3 -u ModelTrainerScripts.model_trainer_sensor_1140_to_flow.py --demo data_path/SensorToFlowFront--eval eval_output_path --checkpoint_path checkpoint_path
-
To use the fine-tuned model for binary classification:
python3 -u ModelTrainerScripts.model_trainer_sensor_1140_to_dryspot.py --demo data_path/SensorToDrySpot --eval eval_output_path --checkpoint_path checkpoint_path
-
For the baseline, run:
python3 -u ModelTrainerScripts.model_trainer_sensor_1140_dryspot_end_to_end_dense.py --demo data_path/SensorToDrySpot --eval eval_output_path --checkpoint_path checkpoint_path
-
Caution: New Folders with logs, tensorboard files etc. will be created in the directory of the Datasets, corresponding to the task: SensorToFlowFront or SensorToDryspot.
For the trainings and evaluations with 80 and 20 sensors use the respective ModelTrainerScripts.model_trainer_sensor_*_...
scripts.