Skip to content
/ hIRT Public
forked from xiangzhou09/hIRT

Hierarchical Item Response Theory (IRT) Models

Notifications You must be signed in to change notification settings

isoyturk/hIRT

 
 

Repository files navigation

hIRT: hierarchical item response theory (IRT) models

hIRT is an R package that implements a class of hierarchical item response theory (IRT) models where both the mean and the variance of the latent “ability parameters” may depend on observed covariates. The current implementation includes both the two-parameter latent trait model for binary data (hltm() and hltm2()) and the graded response model for ordinal data (hgrm() and hgrm2()). Both are fitted via the Expectation-Maximization (EM) algorithm. Asymptotic standard errors are derived from the observed information matrix.

Main Reference: Zhou, Xiang. 2019. “Hierarchical Item Response Models for Analyzing Public Opinion.” Political Analysis, 27(4): 481-502. Available at: https://doi.org/10.1017/pan.2018.63

Full paper with technical appendix is available at: https://scholar.harvard.edu/files/xzhou/files/Zhou2019_hIRT.pdf

Installation

You can install the released version of hIRT from CRAN with:

install.packages("hIRT")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("xiangzhou09/hIRT")

Example

The following example illustrates how the hgrm() function can be used to examine the effects of education and party affiliation on economic ideology, a latent variable gauged by a number of survey items in the American National Election Studies (ANES), 2008. Documentation of the dataset nes_econ2008 can be accessed by running ?nes_econ2008 in R after loading the hIRT package.

library(hIRT)
#> Registered S3 method overwritten by 'pryr':
#>   method      from
#>   print.bytes Rcpp

# survey items used to measure economic ideology
y <- nes_econ2008[, -(1:3)]

# predictors for the mean of economic ideology
x <- model.matrix( ~ party * educ, nes_econ2008)

# predictors for the variance of economic ideology
z <- model.matrix( ~ party, nes_econ2008)

# fitting a hierarhical graded response model
nes_m1 <- hgrm(y, x, z)
#> ............
#>  converged at iteration 12

nes_m1
#> 
#> Call:
#> hgrm(y = y, x = x, z = z)
#> 
#> Mean Regression:
#>                         Estimate Std_Error z_value p_value
#> x(Intercept)              -0.480     0.105  -4.570   0.000
#> xpartyindependent          0.386     0.086   4.473   0.000
#> xpartyRepublican           1.133     0.135   8.408   0.000
#> xeduc2                     0.037     0.079   0.467   0.641
#> xpartyindependent:educ2    0.235     0.117   2.007   0.045
#> xpartyRepublican:educ2     0.428     0.148   2.886   0.004
#> 
#> Variance Regression:
#>                   Estimate Std_Error z_value p_value
#> z(Intercept)        -0.097     0.139  -0.697   0.486
#> zpartyindependent    0.166     0.100   1.661   0.097
#> zpartyRepublican     0.172     0.126   1.373   0.170
#> 
#> Log Likelihood: -16259.16

The output from hgrm is an object of class hIRT. The print() method for hIRT outputs the regression tables for the mean regression and the variance regression.

Extracting coefficients

The coef_item(), coef_mean(), and coef_var() functions can be used to extract coefficient tables for item parameters, the mean regression, and the variance regression respectively.

coef_item(nes_m1)
#> $health_ins7
#>        Estimate Std_Error z_value p_value
#> y>=2      1.279        NA      NA      NA
#> y>=3      0.541     0.063   8.542   0.000
#> y>=4     -0.075     0.083  -0.898   0.369
#> y>=5     -1.047     0.107  -9.826   0.000
#> y>=6     -1.852     0.124 -14.901   0.000
#> y>=7     -2.684     0.149 -17.990   0.000
#> Dscrmn    1.016     0.096  10.569   0.000
#> 
#> $jobs_guar7
#>        Estimate Std_Error z_value p_value
#> y>=2      2.136     0.173  12.377       0
#> y>=3      1.352     0.153   8.860       0
#> y>=4      0.607     0.141   4.299       0
#> y>=5     -0.520     0.137  -3.797       0
#> y>=6     -1.611     0.141 -11.429       0
#> y>=7     -2.785     0.163 -17.043       0
#> Dscrmn    1.305     0.114  11.448       0
#> 
#> $gov_services7
#>        Estimate Std_Error z_value p_value
#> y>=2      3.950     0.222  17.760   0.000
#> y>=3      2.859     0.182  15.707   0.000
#> y>=4      1.831     0.158  11.592   0.000
#> y>=5      0.247     0.147   1.679   0.093
#> y>=6     -1.001     0.154  -6.490   0.000
#> y>=7     -2.020     0.169 -11.947   0.000
#> Dscrmn   -1.363     0.116 -11.715   0.000
#> 
#> $FS_poor3
#>        Estimate Std_Error z_value p_value
#> y>=2     -1.180     0.179  -6.601       0
#> y>=3     -4.459     0.243 -18.357       0
#> Dscrmn    1.918     0.164  11.679       0
#> 
#> $FS_childcare3
#>        Estimate Std_Error z_value p_value
#> y>=2     -0.808     0.148  -5.474       0
#> y>=3     -4.051     0.192 -21.132       0
#> Dscrmn    1.608     0.128  12.535       0
#> 
#> $FS_crime3
#>        Estimate Std_Error z_value p_value
#> y>=2     -0.845     0.066 -12.866       0
#> y>=3     -3.150     0.108 -29.048       0
#> Dscrmn    0.516     0.059   8.823       0
#> 
#> $FS_publicschools3
#>        Estimate Std_Error z_value p_value
#> y>=2     -1.790     0.136 -13.197       0
#> y>=3     -4.144     0.188 -22.022       0
#> Dscrmn    1.302     0.111  11.751       0
#> 
#> $FS_welfare3
#>        Estimate Std_Error z_value p_value
#> y>=2      1.054     0.117   8.970       0
#> y>=3     -1.355     0.116 -11.650       0
#> Dscrmn    1.178     0.099  11.937       0
#> 
#> $FS_envir3
#>        Estimate Std_Error z_value p_value
#> y>=2     -0.855     0.106  -8.071       0
#> y>=3     -3.499     0.159 -22.023       0
#> Dscrmn    1.101     0.092  11.953       0
#> 
#> $FS_socsec3
#>        Estimate Std_Error z_value p_value
#> y>=2     -1.091     0.104 -10.535       0
#> y>=3     -4.278     0.178 -24.033       0
#> Dscrmn    1.028        NA      NA      NA

coef_mean(nes_m1)
#>                         Estimate Std_Error z_value p_value
#> x(Intercept)              -0.480     0.105  -4.570   0.000
#> xpartyindependent          0.386     0.086   4.473   0.000
#> xpartyRepublican           1.133     0.135   8.408   0.000
#> xeduc2                     0.037     0.079   0.467   0.641
#> xpartyindependent:educ2    0.235     0.117   2.007   0.045
#> xpartyRepublican:educ2     0.428     0.148   2.886   0.004

coef_var(nes_m1)
#>                   Estimate Std_Error z_value p_value
#> z(Intercept)        -0.097     0.139  -0.697   0.486
#> zpartyindependent    0.166     0.100   1.661   0.097
#> zpartyRepublican     0.172     0.126   1.373   0.170

Latent scores

The latent_scores() function can be used to extract the Expected A Posteriori (EAP) estimates of the latent ability parameters, along with their “prior” estimates (without the random effects). In this example, the latent ability estimates can be interpreted as the estimated ideological positions of ANES respondents on economic issues.

pref <- latent_scores(nes_m1)

summary(pref)
#>    post_mean            post_sd         prior_mean            prior_sd    
#>  Min.   :-2.082000   Min.   :0.3940   Min.   :-0.4800000   Min.   :0.953  
#>  1st Qu.:-0.751000   1st Qu.:0.4788   1st Qu.:-0.4440000   1st Qu.:0.953  
#>  Median :-0.104000   Median :0.5280   Median :-0.0950000   Median :1.035  
#>  Mean   :-0.000147   Mean   :0.5469   Mean   :-0.0001561   Mean   :1.001  
#>  3rd Qu.: 0.629500   3rd Qu.:0.6090   3rd Qu.: 0.1770000   3rd Qu.:1.035  
#>  Max.   : 3.359000   Max.   :0.9780   Max.   : 1.1170000   Max.   :1.039

Identification constraints.

The constr parameter in the hgrm() and hltm() function can be used to specify the type of constraints used to identify the model. The default option, "latent_scale", constrains the mean of the latent ability parameters to zero and the geometric mean of their prior variance to one; Alternatively, "items" sets the mean of the item difficulty parameters to zero and the geometric mean of the discrimination parameters to one.

In practice, one may want to interpret the effects of the mean predictors (in the above example, education and party affiliation) on the standard deviation scale of the latent trait. This can be easily achieved through rescaling their point estimates and standard errors.

library(dplyr)

total_sd <- sqrt(var(pref$post_mean) + mean(pref$post_sd^2))

coef_mean_sd_scale <- coef_mean(nes_m1) %>%
  tibble::rownames_to_column("term") %>%
  mutate(`Estimate` = `Estimate`/total_sd,
         `Std_Error` = `Std_Error`/total_sd)

coef_mean_sd_scale
#>                      term    Estimate  Std_Error z_value p_value
#> 1            x(Intercept) -0.42437486 0.09283200  -4.570   0.000
#> 2       xpartyindependent  0.34126812 0.07603383   4.473   0.000
#> 3        xpartyRepublican  1.00170150 0.11935543   8.408   0.000
#> 4                  xeduc2  0.03271223 0.06984503   0.467   0.641
#> 5 xpartyindependent:educ2  0.20776686 0.10344137   2.007   0.045
#> 6  xpartyRepublican:educ2  0.37840092 0.13084892   2.886   0.004

hIRT with fixed item parameters

Sometimes, the researcher might want to fit the hIRT models using a set of fixed item parameters, for example, to make results comparable across different studies. The hgrm2() and hltm2() functions can be used for this purpose. They are illustrated in more detail in the package documentation.

About

Hierarchical Item Response Theory (IRT) Models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%