-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
142 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
import pandas as pd | ||
import numpy as np | ||
from pathlib import Path | ||
|
||
import matplotlib.pyplot as plt | ||
import seaborn as sns | ||
from matplotlib.patches import Rectangle | ||
|
||
from scipy.stats import kruskal, f_oneway | ||
from statsmodels.stats.multitest import multipletests | ||
from scipy.cluster import hierarchy | ||
|
||
from one.api import ONE | ||
from reproducible_ephys_functions import figure_style, labs | ||
from dmn_bwm import get_allen_info | ||
|
||
|
||
''' | ||
Replottig BWM decoding results for the repro paper, grouped by labs, | ||
testing for systematic lab biases | ||
''' | ||
|
||
# for vari plot | ||
_, b, lab_cols = labs() | ||
|
||
one = ONE() | ||
|
||
dec_d = {'stimside': 'stimside', 'choice': 'choice', | ||
'feedback': 'feedback', 'wheel-speed': 'wheel-speed'} | ||
|
||
dec_pth = Path(one.cache_dir, 'bwm_res', 'bwm_figs_data', 'decoding') | ||
|
||
|
||
def bwm_scores(nscores=3, tt='stripplot', sb='lab'): | ||
""" | ||
Analyze decoding and encoding scores across regions grouped by labs or animals. | ||
Parameters: | ||
- nscores: Minimum number of scores for a lab/region to be included. | ||
- ana: Analysis type ('dec' or 'enc'), for decoding or encoding (GLM). | ||
- sb: Sort by 'lab' or 'animals'. | ||
""" | ||
|
||
varis = ['choice', 'stimside', 'feedback', 'wheel-speed'] | ||
regs = ['VISa/am', 'CA1', 'DG', 'LP', 'PO'] | ||
|
||
# Use loaded data paths as in `pool_results_across_analyses` | ||
_, pa = get_allen_info() | ||
|
||
# Pooled data paths | ||
ana = 'dec' | ||
analysis_path = dec_pth | ||
|
||
ps = {} | ||
fig, axs = plt.subplots(nrows=1, ncols=len(varis), sharex=True, sharey=True, figsize=(10.88, 7.03)) | ||
k = 0 | ||
|
||
for vari in varis: | ||
# Load pooled data based on `pool_results_across_analyses` | ||
|
||
data_file = analysis_path / f'{dec_d[vari]}_stage2.pqt' | ||
d = pd.read_parquet(data_file) | ||
pths = one.eid2path(d['eid'].values) | ||
d['lab'] = [b[str(p).split('/')[5]] for p in pths] | ||
d['subject'] = [str(p).split('/')[7] for p in pths] | ||
d['region'] = d['region'].replace(['VISa', 'VISam'], 'VISa/am') | ||
d = d.dropna(subset=['score', 'lab', 'region', 'subject']) | ||
|
||
# Plot logic | ||
if tt == 'mean_std': | ||
reg_stats = d.groupby('region')['score'].agg( | ||
mean_score=np.nanmean, std_score=np.nanstd, count_scores='count' | ||
).reset_index() | ||
reg_stats = reg_stats[reg_stats['count_scores'] >= nscores] | ||
|
||
x = reg_stats['mean_score'].values | ||
y = reg_stats['std_score'].values | ||
regions = reg_stats['region'].values | ||
cols = [pa[region] for region in regions] | ||
sizes = reg_stats['count_scores'].values | ||
|
||
axs[k].scatter(x, y, color=cols, s=sizes if ana == 'dec' else sizes / 10) | ||
for i, reg in enumerate(regions): | ||
axs[k].annotate(f' {reg}', (x[i], y[i]), fontsize=5, color=cols[i]) | ||
|
||
axs[k].set_title(vari) | ||
axs[k].set_xlabel('mean') | ||
axs[k].set_ylabel('std') | ||
|
||
elif tt == 'stripplot': | ||
filtered_data = d[d['region'].isin(regs)] | ||
labs_counts = filtered_data.groupby([sb, 'region'])['score'].count().reset_index(name='score_count') | ||
valid_labs_regions = labs_counts[labs_counts['score_count'] >= nscores] | ||
filtered_data = pd.merge(filtered_data, valid_labs_regions[[sb, 'region']], on=[sb, 'region']) | ||
|
||
labss = np.unique(filtered_data[sb].values) | ||
palette = {lab: lab_cols[lab] for lab in labss} if sb == 'lab' else None | ||
|
||
sns.stripplot(x='score', y='region', hue=sb, palette=palette, data=filtered_data, jitter=True if sb == 'lab' else False, dodge=True, ax=axs[k], order=regs, size=3) | ||
for i, region in enumerate(regs): | ||
if i == len(regs) - 1: | ||
continue | ||
axs[k].axhline(i + 0.5, color='grey', linestyle='--') | ||
|
||
axs[k].set_title(vari) | ||
if sb == 'lab': | ||
if k != 0: | ||
axs[k].legend([], [], frameon=False) | ||
else: | ||
axs[k].legend(loc='lower left', fontsize=9, bbox_to_anchor=(-0.55, 1.04), ncols=len(labss)).set_draggable(True) | ||
|
||
# ANOVA | ||
labs = np.unique(d[sb].values) | ||
for reg in regs: | ||
scores_by_lab = [d[(d[sb] == lab) & (d['region'] == reg)]['score'].values for lab in labs] | ||
filtered_scores_by_lab = [lab_scores for lab_scores in scores_by_lab if lab_scores.size >= nscores] | ||
|
||
if len(filtered_scores_by_lab) < 2: | ||
continue | ||
|
||
F, p = kruskal(*filtered_scores_by_lab) | ||
ps[f"{vari}_{reg}"] = p | ||
m = np.max(np.concatenate(scores_by_lab)) | ||
|
||
weight = 'bold' if p < 0.05 else 'normal' | ||
if vari == 'wheel-speed': | ||
x = 0.6 | ||
|
||
else: | ||
x = 0.1 | ||
axs[k].text(x, regs.index(reg), f'F={F:.2f}\np={p:.3f}', weight=weight, ha='left', va='center', fontsize=8) | ||
|
||
k += 1 | ||
|
||
if tt == 'stripplot': | ||
p_values_list = list(ps.values()) | ||
_, ps_corrected, _, _ = multipletests(p_values_list, alpha=0.05, method='fdr_by') | ||
corrected_p_values_dict = dict(zip(ps.keys(), ps_corrected)) | ||
for key, value in corrected_p_values_dict.items(): | ||
print(f"{key}: p-value = {value:.3f}") | ||
|
||
fig.subplots_adjust(top=0.922, bottom=0.088, left=0.094, right=0.982, hspace=0.2, wspace=0.211) |