forked from pytorch/torchrec
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support CaliFree and Unweighted NE in TorchRec (pytorch#2540)
Summary: ### Overview Git pull request TBD after approvals. This diff implements CaliFree and Unweighted NE metrics. The new metrics will not be attached to existing NE metric to avoid cluttering the additional options. ### Implementation CaliFree: raw_ne / ( -pos_labels * torch.log2(weighted_sum_predictions / weighted_num_samples) - (weighted_num_samples - pos_labels) * torch.log2(1 - (weighted_sum_predictions / weighted_num_samples)) ) Unweighted: weights = 1 Differential Revision: D65311797
- Loading branch information
1 parent
0512183
commit 97c2f66
Showing
7 changed files
with
775 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
# pyre-strict | ||
|
||
from typing import Any, cast, Dict, List, Optional, Type | ||
|
||
import torch | ||
from torchrec.metrics.metrics_namespace import MetricName, MetricNamespace, MetricPrefix | ||
from torchrec.metrics.rec_metric import ( | ||
MetricComputationReport, | ||
RecMetric, | ||
RecMetricComputation, | ||
RecMetricException, | ||
) | ||
from torchrec.pt2.utils import pt2_compile_callable | ||
|
||
|
||
def compute_cross_entropy( | ||
labels: torch.Tensor, | ||
predictions: torch.Tensor, | ||
weights: torch.Tensor, | ||
eta: float, | ||
) -> torch.Tensor: | ||
predictions = predictions.double() | ||
predictions.clamp_(min=eta, max=1 - eta) | ||
cross_entropy = -weights * labels * torch.log2(predictions) - weights * ( | ||
1.0 - labels | ||
) * torch.log2(1.0 - predictions) | ||
return cross_entropy | ||
|
||
|
||
def _compute_cross_entropy_norm( | ||
mean_label: torch.Tensor, | ||
pos_labels: torch.Tensor, | ||
neg_labels: torch.Tensor, | ||
eta: float, | ||
) -> torch.Tensor: | ||
mean_label = mean_label.double() | ||
mean_label.clamp_(min=eta, max=1 - eta) | ||
return -pos_labels * torch.log2(mean_label) - neg_labels * torch.log2( | ||
1.0 - mean_label | ||
) | ||
|
||
|
||
@torch.fx.wrap | ||
def _compute_ne( | ||
ce_sum: torch.Tensor, | ||
weighted_num_samples: torch.Tensor, | ||
pos_labels: torch.Tensor, | ||
neg_labels: torch.Tensor, | ||
eta: float, | ||
) -> torch.Tensor: | ||
# Goes into this block if all elements in weighted_num_samples > 0 | ||
weighted_num_samples = weighted_num_samples.double().clamp(min=eta) | ||
mean_label = pos_labels / weighted_num_samples | ||
ce_norm = _compute_cross_entropy_norm(mean_label, pos_labels, neg_labels, eta) | ||
return ce_sum / ce_norm | ||
|
||
|
||
def compute_cali_free_ne( | ||
ce_sum: torch.Tensor, | ||
weighted_num_samples: torch.Tensor, | ||
pos_labels: torch.Tensor, | ||
neg_labels: torch.Tensor, | ||
weighted_sum_predictions: torch.Tensor, | ||
eta: float, | ||
allow_missing_label_with_zero_weight: bool = False, | ||
) -> torch.Tensor: | ||
if allow_missing_label_with_zero_weight and not weighted_num_samples.all(): | ||
# If nan were to occur, return a dummy value instead of nan if | ||
# allow_missing_label_with_zero_weight is True | ||
return torch.tensor([eta]) | ||
raw_ne = _compute_ne( | ||
ce_sum=ce_sum, | ||
weighted_num_samples=weighted_num_samples, | ||
pos_labels=pos_labels, | ||
neg_labels=neg_labels, | ||
eta=eta, | ||
) | ||
return raw_ne / ( | ||
-pos_labels * torch.log2(weighted_sum_predictions / weighted_num_samples) | ||
- (weighted_num_samples - pos_labels) | ||
* torch.log2(1 - (weighted_sum_predictions / weighted_num_samples)) | ||
) | ||
|
||
|
||
def get_cali_free_ne_states( | ||
labels: torch.Tensor, | ||
predictions: torch.Tensor, | ||
weights: torch.Tensor, | ||
eta: float, | ||
) -> Dict[str, torch.Tensor]: | ||
cross_entropy = compute_cross_entropy( | ||
labels, | ||
predictions, | ||
weights, | ||
eta, | ||
) | ||
return { | ||
"cross_entropy_sum": torch.sum(cross_entropy, dim=-1), | ||
"weighted_num_samples": torch.sum(weights, dim=-1), | ||
"pos_labels": torch.sum(weights * labels, dim=-1), | ||
"neg_labels": torch.sum(weights * (1.0 - labels), dim=-1), | ||
"weighted_sum_predictions": torch.sum(weights * predictions, dim=-1), | ||
} | ||
|
||
|
||
class CaliFreeNEMetricComputation(RecMetricComputation): | ||
r""" | ||
This class implements the RecMetricComputation for CaliFree NE, i.e. Normalized Entropy. | ||
The constructor arguments are defined in RecMetricComputation. | ||
See the docstring of RecMetricComputation for more detail. | ||
Args: | ||
allow_missing_label_with_zero_weight (bool): allow missing label to have weight 0, instead of throwing exception. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
*args: Any, | ||
allow_missing_label_with_zero_weight: bool = False, | ||
**kwargs: Any, | ||
) -> None: | ||
self._allow_missing_label_with_zero_weight: bool = ( | ||
allow_missing_label_with_zero_weight | ||
) | ||
super().__init__(*args, **kwargs) | ||
self._add_state( | ||
"cross_entropy_sum", | ||
torch.zeros(self._n_tasks, dtype=torch.double), | ||
add_window_state=True, | ||
dist_reduce_fx="sum", | ||
persistent=True, | ||
) | ||
self._add_state( | ||
"weighted_num_samples", | ||
torch.zeros(self._n_tasks, dtype=torch.double), | ||
add_window_state=True, | ||
dist_reduce_fx="sum", | ||
persistent=True, | ||
) | ||
self._add_state( | ||
"pos_labels", | ||
torch.zeros(self._n_tasks, dtype=torch.double), | ||
add_window_state=True, | ||
dist_reduce_fx="sum", | ||
persistent=True, | ||
) | ||
self._add_state( | ||
"neg_labels", | ||
torch.zeros(self._n_tasks, dtype=torch.double), | ||
add_window_state=True, | ||
dist_reduce_fx="sum", | ||
persistent=True, | ||
) | ||
self._add_state( | ||
"weighted_sum_predictions", | ||
torch.zeros(self._n_tasks, dtype=torch.double), | ||
add_window_state=True, | ||
dist_reduce_fx="sum", | ||
persistent=True, | ||
) | ||
self.eta = 1e-12 | ||
|
||
@pt2_compile_callable | ||
def update( | ||
self, | ||
*, | ||
predictions: Optional[torch.Tensor], | ||
labels: torch.Tensor, | ||
weights: Optional[torch.Tensor], | ||
**kwargs: Dict[str, Any], | ||
) -> None: | ||
if predictions is None or weights is None: | ||
raise RecMetricException( | ||
"Inputs 'predictions' and 'weights' should not be None for CaliFreeNEMetricComputation update" | ||
) | ||
states = get_cali_free_ne_states(labels, predictions, weights, self.eta) | ||
num_samples = predictions.shape[-1] | ||
|
||
for state_name, state_value in states.items(): | ||
state = getattr(self, state_name) | ||
state += state_value | ||
self._aggregate_window_state(state_name, state_value, num_samples) | ||
|
||
def _compute(self) -> List[MetricComputationReport]: | ||
reports = [ | ||
MetricComputationReport( | ||
name=MetricName.CALI_FREE_NE, | ||
metric_prefix=MetricPrefix.LIFETIME, | ||
value=compute_cali_free_ne( | ||
cast(torch.Tensor, self.cross_entropy_sum), | ||
cast(torch.Tensor, self.weighted_num_samples), | ||
cast(torch.Tensor, self.pos_labels), | ||
cast(torch.Tensor, self.neg_labels), | ||
cast(torch.Tensor, self.weighted_sum_predictions), | ||
self.eta, | ||
self._allow_missing_label_with_zero_weight, | ||
), | ||
), | ||
MetricComputationReport( | ||
name=MetricName.CALI_FREE_NE, | ||
metric_prefix=MetricPrefix.WINDOW, | ||
value=compute_cali_free_ne( | ||
self.get_window_state("cross_entropy_sum"), | ||
self.get_window_state("weighted_num_samples"), | ||
self.get_window_state("pos_labels"), | ||
self.get_window_state("neg_labels"), | ||
self.get_window_state("weighted_sum_predictions"), | ||
self.eta, | ||
self._allow_missing_label_with_zero_weight, | ||
), | ||
), | ||
] | ||
return reports | ||
|
||
|
||
class CaliFreeNEMetric(RecMetric): | ||
_namespace: MetricNamespace = MetricNamespace.CALI_FREE_NE | ||
_computation_class: Type[RecMetricComputation] = CaliFreeNEMetricComputation |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.