forked from pytorch/torchrec
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support Hindsight PR in TorchRec (pytorch#2627)
Summary: ### Overview This diff implements HindsightTargetPR metric into TorchRec. This will also include a bucketized version. Thrift changes submitted ahead in D66216486. ### Implementation 1) Create X-wide granular array to store metric states where each index represents the threshold. For bucketization, each bucket will be stacked in the next dimension within the state tensor. 2) Calculate minimum threshold that meets target_precision. 3) Calculate precision and recall points with target threshold. ### Metrics This metric will return the following curves: * hindsight_target_pr: this is the calculated threshold for the window state to maximize recall while achieving the target precision. * hindsight_target_precision: this is the achieved precision with hindsight_target_pr. * hindsight_target_recall: this is the achieved recall with hindsight_target_pr. ### Usage Hindsight PR metrics are primarily useful to mimic the calibration system within identity team. Please adjust the bucketization and window size accordingly to best approximate this. Note: since the states are stored as a dimensional tensor, multiple tasks will not be supported for this metric. Reviewed By: iamzainhuda Differential Revision: D65867461
- Loading branch information
1 parent
fad795e
commit 69dc737
Showing
5 changed files
with
399 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,235 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
# pyre-strict | ||
|
||
from typing import Any, cast, Dict, List, Optional, Type | ||
|
||
import torch | ||
from torchrec.metrics.metrics_namespace import MetricName, MetricNamespace, MetricPrefix | ||
from torchrec.metrics.rec_metric import ( | ||
MetricComputationReport, | ||
RecMetric, | ||
RecMetricComputation, | ||
RecMetricException, | ||
) | ||
|
||
|
||
TARGET_PRECISION = "target_precision" | ||
THRESHOLD_GRANULARITY = 1000 | ||
|
||
|
||
def compute_precision( | ||
num_true_positives: torch.Tensor, num_false_positives: torch.Tensor | ||
) -> torch.Tensor: | ||
return torch.where( | ||
num_true_positives + num_false_positives == 0.0, | ||
0.0, | ||
num_true_positives / (num_true_positives + num_false_positives).double(), | ||
) | ||
|
||
|
||
def compute_recall( | ||
num_true_positives: torch.Tensor, num_false_negitives: torch.Tensor | ||
) -> torch.Tensor: | ||
return torch.where( | ||
num_true_positives + num_false_negitives == 0.0, | ||
0.0, | ||
num_true_positives / (num_true_positives + num_false_negitives), | ||
) | ||
|
||
|
||
def compute_threshold_idx( | ||
num_true_positives: torch.Tensor, | ||
num_false_positives: torch.Tensor, | ||
target_precision: float, | ||
) -> int: | ||
for i in range(THRESHOLD_GRANULARITY): | ||
if ( | ||
compute_precision(num_true_positives[i], num_false_positives[i]) | ||
>= target_precision | ||
): | ||
return i | ||
|
||
return THRESHOLD_GRANULARITY - 1 | ||
|
||
|
||
def compute_true_pos_sum( | ||
labels: torch.Tensor, | ||
predictions: torch.Tensor, | ||
weights: torch.Tensor, | ||
) -> torch.Tensor: | ||
predictions = predictions.double() | ||
tp_sum = torch.zeros(THRESHOLD_GRANULARITY, dtype=torch.double) | ||
thresholds = torch.linspace(0, 1, steps=THRESHOLD_GRANULARITY) | ||
for i, threshold in enumerate(thresholds): | ||
tp_sum[i] = torch.sum(weights * ((predictions >= threshold) * labels), -1) | ||
return tp_sum | ||
|
||
|
||
def compute_false_pos_sum( | ||
labels: torch.Tensor, | ||
predictions: torch.Tensor, | ||
weights: torch.Tensor, | ||
) -> torch.Tensor: | ||
predictions = predictions.double() | ||
fp_sum = torch.zeros(THRESHOLD_GRANULARITY, dtype=torch.double) | ||
thresholds = torch.linspace(0, 1, steps=THRESHOLD_GRANULARITY) | ||
for i, threshold in enumerate(thresholds): | ||
fp_sum[i] = torch.sum(weights * ((predictions >= threshold) * (1 - labels)), -1) | ||
return fp_sum | ||
|
||
|
||
def compute_false_neg_sum( | ||
labels: torch.Tensor, | ||
predictions: torch.Tensor, | ||
weights: torch.Tensor, | ||
) -> torch.Tensor: | ||
predictions = predictions.double() | ||
fn_sum = torch.zeros(THRESHOLD_GRANULARITY, dtype=torch.double) | ||
thresholds = torch.linspace(0, 1, steps=THRESHOLD_GRANULARITY) | ||
for i, threshold in enumerate(thresholds): | ||
fn_sum[i] = torch.sum(weights * ((predictions <= threshold) * labels), -1) | ||
return fn_sum | ||
|
||
|
||
def get_pr_states( | ||
labels: torch.Tensor, | ||
predictions: torch.Tensor, | ||
weights: Optional[torch.Tensor], | ||
) -> Dict[str, torch.Tensor]: | ||
if weights is None: | ||
weights = torch.ones_like(predictions) | ||
return { | ||
"true_pos_sum": compute_true_pos_sum(labels, predictions, weights), | ||
"false_pos_sum": compute_false_pos_sum(labels, predictions, weights), | ||
"false_neg_sum": compute_false_neg_sum(labels, predictions, weights), | ||
} | ||
|
||
|
||
class HindsightTargetPRMetricComputation(RecMetricComputation): | ||
r""" | ||
This class implements the RecMetricComputation for Hingsight Target PR. | ||
The constructor arguments are defined in RecMetricComputation. | ||
See the docstring of RecMetricComputation for more detail. | ||
Args: | ||
target_precision (float): If provided, computes the minimum threshold to achieve the target precision. | ||
""" | ||
|
||
def __init__( | ||
self, *args: Any, target_precision: float = 0.5, **kwargs: Any | ||
) -> None: | ||
super().__init__(*args, **kwargs) | ||
self._add_state( | ||
"true_pos_sum", | ||
torch.zeros(THRESHOLD_GRANULARITY, dtype=torch.double), | ||
add_window_state=True, | ||
dist_reduce_fx="sum", | ||
persistent=True, | ||
) | ||
self._add_state( | ||
"false_pos_sum", | ||
torch.zeros(THRESHOLD_GRANULARITY, dtype=torch.double), | ||
add_window_state=True, | ||
dist_reduce_fx="sum", | ||
persistent=True, | ||
) | ||
self._add_state( | ||
"false_neg_sum", | ||
torch.zeros(THRESHOLD_GRANULARITY, dtype=torch.double), | ||
add_window_state=True, | ||
dist_reduce_fx="sum", | ||
persistent=True, | ||
) | ||
self._target_precision: float = target_precision | ||
|
||
def update( | ||
self, | ||
*, | ||
predictions: Optional[torch.Tensor], | ||
labels: torch.Tensor, | ||
weights: Optional[torch.Tensor], | ||
**kwargs: Dict[str, Any], | ||
) -> None: | ||
if predictions is None: | ||
raise RecMetricException( | ||
"Inputs 'predictions' should not be None for HindsightTargetPRMetricComputation update" | ||
) | ||
states = get_pr_states(labels, predictions, weights) | ||
num_samples = predictions.shape[-1] | ||
|
||
for state_name, state_value in states.items(): | ||
state = getattr(self, state_name) | ||
state += state_value | ||
self._aggregate_window_state(state_name, state_value, num_samples) | ||
|
||
def _compute(self) -> List[MetricComputationReport]: | ||
true_pos_sum = cast(torch.Tensor, self.true_pos_sum) | ||
false_pos_sum = cast(torch.Tensor, self.false_pos_sum) | ||
false_neg_sum = cast(torch.Tensor, self.false_neg_sum) | ||
threshold_idx = compute_threshold_idx( | ||
true_pos_sum, | ||
false_pos_sum, | ||
self._target_precision, | ||
) | ||
window_threshold_idx = compute_threshold_idx( | ||
self.get_window_state("true_pos_sum"), | ||
self.get_window_state("false_pos_sum"), | ||
self._target_precision, | ||
) | ||
reports = [ | ||
MetricComputationReport( | ||
name=MetricName.HINDSIGHT_TARGET_PR, | ||
metric_prefix=MetricPrefix.LIFETIME, | ||
value=torch.Tensor(threshold_idx), | ||
), | ||
MetricComputationReport( | ||
name=MetricName.HINDSIGHT_TARGET_PR, | ||
metric_prefix=MetricPrefix.WINDOW, | ||
value=torch.Tensor(window_threshold_idx), | ||
), | ||
MetricComputationReport( | ||
name=MetricName.HINDSIGHT_TARGET_PRECISION, | ||
metric_prefix=MetricPrefix.LIFETIME, | ||
value=compute_precision( | ||
true_pos_sum[threshold_idx], | ||
false_pos_sum[threshold_idx], | ||
), | ||
), | ||
MetricComputationReport( | ||
name=MetricName.HINDSIGHT_TARGET_PRECISION, | ||
metric_prefix=MetricPrefix.WINDOW, | ||
value=compute_precision( | ||
self.get_window_state("true_pos_sum")[window_threshold_idx], | ||
self.get_window_state("false_pos_sum")[window_threshold_idx], | ||
), | ||
), | ||
MetricComputationReport( | ||
name=MetricName.HINDSIGHT_TARGET_RECALL, | ||
metric_prefix=MetricPrefix.LIFETIME, | ||
value=compute_recall( | ||
true_pos_sum[threshold_idx], | ||
false_neg_sum[threshold_idx], | ||
), | ||
), | ||
MetricComputationReport( | ||
name=MetricName.HINDSIGHT_TARGET_RECALL, | ||
metric_prefix=MetricPrefix.WINDOW, | ||
value=compute_recall( | ||
self.get_window_state("true_pos_sum")[window_threshold_idx], | ||
self.get_window_state("false_neg_sum")[window_threshold_idx], | ||
), | ||
), | ||
] | ||
return reports | ||
|
||
|
||
class HindsightTargetPRMetric(RecMetric): | ||
_namespace: MetricNamespace = MetricNamespace.HINDSIGHT_TARGET_PR | ||
_computation_class: Type[RecMetricComputation] = HindsightTargetPRMetricComputation |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.