Arcee is a tool that helps you to integrate ML tasks with OptScale. This tool can automatically collect executor metadata from the cloud and process stats.
Arcee requires Python 3.7+ to run.
To install the optscale_arcee
package, use pip:
pip install optscale-arcee
Import the optscale_arcee
module into your code as follows:
import optscale_arcee as arcee
To initialize the arcee collector use the init
method with the following parameters:
- token (str, required): the profiling token.
- task_key (str, required): the task key for which you want to collect data.
- run_name (str, optional): the run name.
- endpoint_url (str, optional): the custom OptScale endpoint (default is https://my.optscale.com/arcee/v2).
- ssl (bool, optional): enable/disable SSL checks (self-signed SSL certificates support).
- period (int, optional): arcee daemon process heartbeat period in seconds (default is 1).
To initialize the collector using a context manager, use the following code snippet:
with arcee.init(token="YOUR-PROFILING-TOKEN",
task_key="YOUR-TASK-KEY",
run_name="YOUR-RUN-NAME",
endpoint_url="https://YOUR-OPTSCALE-PUBLIC-IP:443/arcee/v2",
ssl=SSL,
period=PERIOD):
# some code
Examples:
with arcee.init("00000000-0000-0000-0000-000000000000", "linear_regression",
run_name="My run name", ssl=True, period=1):
# some code
For custom OptScale deployments:
with arcee.init("00000000-0000-0000-0000-000000000000", "linear_regression",
run_name="My run name", endpoint_url="https://172.18.12.3:443/arcee/v2",
ssl=False, period=5):
# some code
This method automatically handles error catching and terminates arcee execution.
Alternatively, to get more control over error catching and execution finishing, you can initialize the collector using a corresponding method.
Note that this method will require you to manually handle errors or terminate arcee execution using the error
and finish
methods.
arcee.init(token="YOUR-PROFILING-TOKEN", task_key="YOUR-TASK-KEY")
# some code
arcee.finish()
# or in case of error
arcee.error()
To send metrics, use the send
method with the following parameter:
- data (dict, required): a dictionary of metric names and their respective values (note that metric data values should be numeric).
arcee.send({"YOUR-METRIC-1-KEY": YOUR_METRIC_1_VALUE, "YOUR-METRIC-2-KEY": YOUR_METRIC_2_VALUE})
Example:
arcee.send({ "accuracy": 71.44, "loss": 0.37 })
To add hyperparameters, use the hyperparam
method with the following parameters:
- key (str, required): the hyperparameter name.
- value (str | number, required): the hyperparameter value.
arcee.hyperparam(key="YOUR-PARAM-KEY", value=YOUR_PARAM_VALUE)
Example:
arcee.hyperparam("EPOCHS", 100)
To tag a run, use the tag
method with the following parameters:
- key (str, required): the tag name.
- value (str | number, required): the tag value.
arcee.tag(key="YOUR-TAG-KEY", value=YOUR_TAG_VALUE)
Example:
arcee.tag("Algorithm", "Linear Learn Algorithm")
To add a milestone, use the milestone
method with the following parameter:
- name (str, required): the milestone name.
arcee.milestone(name="YOUR-MILESTONE-NAME")
Example:
arcee.milestone("Download training data")
To add a stage, use the stage
method with the following parameter:
- name (str, required): the stage name.
arcee.stage(name="YOUR-STAGE-NAME")
Example:
arcee.stage("preparing")
To log a dataset, use the dataset
method with the following parameters:
- path (str, required): the dataset path.
- name (str, optional): the dataset name.
- description (str, optional): the dataset description.
- labels (list, optional): the dataset labels.
arcee.dataset(path="YOUR-DATASET-PATH",
name="YOUR-DATASET-NAME",
description="YOUR-DATASET-DESCRIPTION",
labels=["YOUR-DATASET-LABEL-1", "YOUR-DATASET-LABEL-2"])
Example:
arcee.dataset("https://s3/ml-bucket/datasets/training_dataset.csv",
name="Training dataset",
description="Training dataset (100k rows)",
labels=["training", "100k"])
To create a model, use the model
method with the following parameters:
- key (str, required): the unique model key.
- path (str, optional): the run model path.
arcee.model(key="YOUR-MODEL-KEY", path="YOUR-MODEL-PATH")
Example:
arcee.model("my_model", "/home/user/my_model")
To set a custom model version, use the model_version
method with the following parameter:
- version (str, required): the version name.
arcee.model_version(version="YOUR-MODEL-VERSION")
Example:
arcee.model_version("1.2.3-release")
To set a model version alias, use the model_version_alias
method with the following parameter:
- alias (str, required): the alias name.
arcee.model_version_alias(alias="YOUR-MODEL-VERSION-ALIAS")
Example:
arcee.model_version_alias("winner")
To add tags to a model version, use the model_version_tag
method with the following parameters:
- key (str, required): the tag name.
- value (str | number, required): the tag value.
arcee.model_version_tag(key="YOUR-MODEL-VERSION-TAG-KEY", value=YOUR_MODEL_VERSION_TAG_VALUE)
Example:
arcee.model_version_tag("env", "staging demo")
To create an artifact, use the artifact
method with the following parameters:
- path (str, required): the run artifact path.
- name (str, optional): the artifact name.
- description (str, optional): the artifact description.
- tags (dict, optional): the artifact tags.
arcee.artifact(path="YOUR-ARTIFACT-PATH",
name="YOUR-ARTIFACT-NAME",
description="YOUR-ARTIFACT-DESCRIPTION",
tags={"YOUR-ARTIFACT-TAG-KEY": YOUR_ARTIFACT_TAG_VALUE})
Example:
arcee.artifact("https://s3/ml-bucket/artifacts/AccuracyChart.png",
name="Accuracy line chart",
description="The dependence of accuracy on the time",
tags={"env": "staging"})
To add a tag to an artifact, use the artifact_tag
method with the following parameters:
- path (str, required): the run artifact path.
- key (str, required): the tag name.
- value (str | number, required): the tag value.
arcee.artifact_tag(path="YOUR-ARTIFACT-PATH",
key="YOUR-ARTIFACT-TAG-KEY",
value=YOUR_ARTIFACT_TAG_VALUE)
Example:
arcee.artifact_tag("https://s3/ml-bucket/artifacts/AccuracyChart.png",
"env", "staging demo")
To finish a run, use the finish
method.
arcee.finish()
To fail a run, use the error
method.
arcee.error()