-
Notifications
You must be signed in to change notification settings - Fork 201
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Skip MLX bench for the bench runner.
- Loading branch information
Showing
1 changed file
with
55 additions
and
56 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,59 +1,58 @@ | ||
import os | ||
import platform | ||
import tempfile | ||
|
||
import mlx.core as mx | ||
from safetensors.mlx import load_file, save_file | ||
|
||
|
||
def create_gpt2(n_layers: int): | ||
tensors = {} | ||
tensors["wte"] = mx.zeros((50257, 768)) | ||
tensors["wpe"] = mx.zeros((1024, 768)) | ||
for i in range(n_layers): | ||
tensors[f"h.{i}.ln_1.weight"] = mx.zeros((768,)) | ||
tensors[f"h.{i}.ln_1.bias"] = mx.zeros((768,)) | ||
tensors[f"h.{i}.attn.bias"] = mx.zeros((1, 1, 1024, 1024)) | ||
tensors[f"h.{i}.attn.c_attn.weight"] = mx.zeros((768, 2304)) | ||
tensors[f"h.{i}.attn.c_attn.bias"] = mx.zeros((2304)) | ||
tensors[f"h.{i}.attn.c_proj.weight"] = mx.zeros((768, 768)) | ||
tensors[f"h.{i}.attn.c_proj.bias"] = mx.zeros((768)) | ||
tensors[f"h.{i}.ln_2.weight"] = mx.zeros((768)) | ||
tensors[f"h.{i}.ln_2.bias"] = mx.zeros((768)) | ||
tensors[f"h.{i}.mlp.c_fc.weight"] = mx.zeros((768, 3072)) | ||
tensors[f"h.{i}.mlp.c_fc.bias"] = mx.zeros((3072)) | ||
tensors[f"h.{i}.mlp.c_proj.weight"] = mx.zeros((3072, 768)) | ||
tensors[f"h.{i}.mlp.c_proj.bias"] = mx.zeros((768)) | ||
tensors["ln_f.weight"] = mx.zeros((768)) | ||
tensors["ln_f.bias"] = mx.zeros((768)) | ||
return tensors | ||
|
||
|
||
def load(filename): | ||
return mx.load(filename) | ||
|
||
|
||
def test_mlx_mlx_load(benchmark): | ||
# benchmark something | ||
weights = create_gpt2(12) | ||
with tempfile.NamedTemporaryFile(delete=False) as f: | ||
filename = f"{f.name}.npz" | ||
mx.savez(filename, **weights) | ||
result = benchmark(load, filename) | ||
os.unlink(f.name) | ||
|
||
for k, v in weights.items(): | ||
tv = result[k] | ||
assert mx.allclose(v, tv) | ||
|
||
|
||
def test_mlx_sf_load(benchmark): | ||
# benchmark something | ||
weights = create_gpt2(12) | ||
with tempfile.NamedTemporaryFile(delete=False) as f: | ||
save_file(weights, f.name) | ||
result = benchmark(load_file, f.name) | ||
os.unlink(f.name) | ||
|
||
for k, v in weights.items(): | ||
tv = result[k] | ||
assert mx.allclose(v, tv) | ||
|
||
if platform.system() == "Darwin": | ||
import mlx.core as mx | ||
from safetensors.mlx import load_file, save_file | ||
|
||
def create_gpt2(n_layers: int): | ||
tensors = {} | ||
tensors["wte"] = mx.zeros((50257, 768)) | ||
tensors["wpe"] = mx.zeros((1024, 768)) | ||
for i in range(n_layers): | ||
tensors[f"h.{i}.ln_1.weight"] = mx.zeros((768,)) | ||
tensors[f"h.{i}.ln_1.bias"] = mx.zeros((768,)) | ||
tensors[f"h.{i}.attn.bias"] = mx.zeros((1, 1, 1024, 1024)) | ||
tensors[f"h.{i}.attn.c_attn.weight"] = mx.zeros((768, 2304)) | ||
tensors[f"h.{i}.attn.c_attn.bias"] = mx.zeros((2304)) | ||
tensors[f"h.{i}.attn.c_proj.weight"] = mx.zeros((768, 768)) | ||
tensors[f"h.{i}.attn.c_proj.bias"] = mx.zeros((768)) | ||
tensors[f"h.{i}.ln_2.weight"] = mx.zeros((768)) | ||
tensors[f"h.{i}.ln_2.bias"] = mx.zeros((768)) | ||
tensors[f"h.{i}.mlp.c_fc.weight"] = mx.zeros((768, 3072)) | ||
tensors[f"h.{i}.mlp.c_fc.bias"] = mx.zeros((3072)) | ||
tensors[f"h.{i}.mlp.c_proj.weight"] = mx.zeros((3072, 768)) | ||
tensors[f"h.{i}.mlp.c_proj.bias"] = mx.zeros((768)) | ||
tensors["ln_f.weight"] = mx.zeros((768)) | ||
tensors["ln_f.bias"] = mx.zeros((768)) | ||
return tensors | ||
|
||
def load(filename): | ||
return mx.load(filename) | ||
|
||
def test_mlx_mlx_load(benchmark): | ||
# benchmark something | ||
weights = create_gpt2(12) | ||
with tempfile.NamedTemporaryFile(delete=False) as f: | ||
filename = f"{f.name}.npz" | ||
mx.savez(filename, **weights) | ||
result = benchmark(load, filename) | ||
os.unlink(f.name) | ||
|
||
for k, v in weights.items(): | ||
tv = result[k] | ||
assert mx.allclose(v, tv) | ||
|
||
def test_mlx_sf_load(benchmark): | ||
# benchmark something | ||
weights = create_gpt2(12) | ||
with tempfile.NamedTemporaryFile(delete=False) as f: | ||
save_file(weights, f.name) | ||
result = benchmark(load_file, f.name) | ||
os.unlink(f.name) | ||
|
||
for k, v in weights.items(): | ||
tv = result[k] | ||
assert mx.allclose(v, tv) |