Some recent (2015-now) Human-Object Interaction Learing studies. If you find any errors or problems, please feel free to comment.
-
PIC [Website]
More...
-
Pairwise (ECCV2018) [Paper]
-
Attentional Pooling for Action Recognition (NIPS2017) [Code] [Paper]
-
Learning Models for Actions and Person-Object Interactions with Transfer to Question Answering (ECCV2016) [Code] [Paper]
-
Contextual Action Recognition with R*CNN (ICCV2015) [Code] [Paper]
More...
-
Cascaded Human-Object Interaction Recognition (CVPR2020) [Code] [Paper]
-
HOID (CVPR2020) [Paper]
-
RPNN (ICCV2019) [Paper]
-
Deep Contextual Attention for Human-Object Interaction Detection (ICCV2019) [Paper]
-
InteractNet (CVPR2018) [Paper]
-
Scaling Human-Object Interaction Recognition through Zero-Shot Learning (WACV2018) [Paper]
-
VS-GATs (Mar 2020) [Paper]
-
Classifying All Interacting Pairs in a Single Shot (Jan 2020) [Paper]
-
Deep Contextual Attention for Human-Object Interaction Detection (Oct 2019) [Paper]
More...
Method | Pub | Full(def) | Rare(def) | None-Rare(def) | Full(ko) | Rare(ko) | None-Rare(ko) |
---|---|---|---|---|---|---|---|
Shen et al. | WACV2018 | 6.46 | 4.24 | 7.12 | - | - | - |
HO-RCNN | WACV2018 | 7.81 | 5.37 | 8.54 | 10.41 | 8.94 | 10.85 |
InteractNet | CVPR2018 | 9.94 | 7.16 | 10.77 | - | - | - |
GPNN | ECCV2018 | 13.11 | 9.34 | 14.23 | - | - | - |
Xu et. al | ICCV2019 | 14.70 | 13.26 | 15.13 | - | - | - |
iCAN | BMVC2018 | 14.84 | 10.45 | 16.15 | 16.26 | 11.33 | 17.73 |
Wang et. al. | ICCV2019 | 16.24 | 11.16 | 17.75 | 17.73 | 12.78 | 19.21 |
Functional (suppl) | AAAI2020 | 16.96 | 11.73 | 18.52 | - | - | - |
Interactiveness | CVPR2019 | 17.03 | 13.42 | 18.11 | 19.17 | 15.51 | 20.26 |
No-Frills | ICCV2019 | 17.18 | 12.17 | 18.68 | - | - | - |
RPNN | ICCV2019 | 17.35 | 12.78 | 18.71 | - | - | - |
PMFNet | ICCV2019 | 17.46 | 15.65 | 18.00 | 20.34 | 17.47 | 21.20 |
Interactiveness-optimized | CVPR2019 | 17.54 | 13.80 | 18.65 | 19.75 | 15.70 | 20.96 |
HOID | - | 17.85 | 12.85 | 19.34 | - | - | - |
Julia et al. | ICCV2019 | 19.40 | 14.60 | 20.90 | - | - | - |
IP-Net | CVPR2020 | 19.56 | 12.79 | 21.58 | 22.05 | 15.77 | 23.92 |
VS-GATs | arXiv | 19.66 | 15.79 | 20.81 | - | - | - |
VSGNet | CVPR2020 | 19.80 | 16.05 | 20.91 | - | - | - |
DJ-RN | CVPR2020 | 21.34 | 18.53 | 22.18 | 23.69 | 20.64 | 24.60 |
2) Detector: pre-trained on COCO, fine-tuned on HICO-DET train set (with GT human-object pair boxes)
Method | Pub | Full(def) | Rare(def) | None-Rare(def) | Full(ko) | Rare(ko) | None-Rare(ko) |
---|---|---|---|---|---|---|---|
PPDM (one-stage, paper) | CVPR2020 | 21.10 | 14.46 | 23.09 | - | - | - |
PPDM (one-stage, github-hourglass104) | CVPR2020 | 21.73/21.94 | 13.78/13.97 | 24.10/24.32 | 24.58/24.81 | 16.65/17.09 | 26.84/27.12 |
Functional | AAAI2020 | 21.96 | 16.43 | 23.62 | - | - | - |
Method | Pub | Full(def) | Rare(def) | None-Rare(def) | Full(ko) | Rare(ko) | None-Rare(ko) |
---|---|---|---|---|---|---|---|
iCAN | BMVC2018 | 14.84 | 10.45 | 16.15 | 16.26 | 11.33 | 17.73 |
iCAN+HAKE-HICO-DET | CVPR2020 | 19.61 | 17.29 | 20.30 | 22.10 | 20.46 | 22.59 |
Interactiveness | CVPR2019 | 17.03 | 13.42 | 18.11 | 19.17 | 15.51 | 20.26 |
Interactiveness+HAKE-HICO-DET | CVPR2020 | 22.12 | 20.19 | 22.69 | 24.06 | 22.19 | 24.62 |
Interactiveness+HAKE-Large | CVPR2020 | 22.66 | 21.17 | 23.09 | 24.53 | 23.00 | 24.99 |
Method | mAP |
---|---|
iCAN | 8.14 |
Interactiveness | 8.22 |
Julia et al.(reproduced) | 9.72 |
DJ-RN | 10.37 |
Method | Pub | AP(role) |
---|---|---|
Gupta et al. | arXiv | 31.8 |
InteractNet | CVPR2018 | 40.0 |
GPNN | ECCV2018 | 44.0 |
iCAN | BMVC2018 | 45.3 |
Xu et. al | CVPR2019 | 45.9 |
Wang et. al. | ICCV2019 | 47.3 |
Interactiveness | CVPR2019 | 47.8 |
Zhou et. al. | CVPR2020 | 48.9 |
Interactiveness-optimized | CVPR2019 | 49.0 |
IP-Net | CVPR2020 | 51.0 |
VSGNet | CVPR2020 | 51.8 |
PMFNet | ICCV2019 | 52.0 |
Method | Pub | AP(role) |
---|---|---|
iCAN | CVPR2019 | 45.3 |
iCAN+HAKE-Large (transfer learning) | CVPR2020 | 49.2 |
Interactiveness | CVPR2019 | 47.8 |
Interactiveness+HAKE-Large (transfer learning) | CVPR2020 | 51.0 |
Method | mAP |
---|---|
R*CNN | 28.5 |
Girdhar et.al. | 34.6 |
Mallya et.al. | 36.1 |
Pairwise | 39.9 |
Method | mAP |
---|---|
Mallya et.al. | 36.1 |
Mallya et.al.+HAKE-HICO | 45.0 |
Pairwise | 39.9 |
Pairwise+HAKE-HICO | 45.9 |
Pairwise+HAKE-Large | 46.3 |