forked from kuan-lab/tem-tomo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
calc_tomo_FSCs.py
58 lines (52 loc) · 2.02 KB
/
calc_tomo_FSCs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from FSC import *
import mrcfile
import time
import pandas as pd
import os
from resolution_measure_mrc import *
####### Edit these params
num_cores = 16
cube_size = 100
sub_sampling_zxy = [1,4,4]
sub_region = -1
num_angs = [33, 17, 5]
max_angs = [60,30, 10]
output_dir = '240126_FSC3D_100cube_subsamp'
#fake = True
fake = False
overwrite = False
###########
# Working with file structure to analyze multiple datasets
#data_path = '/Users/atk42/OneDrive - Yale University/Lab/Projects/TEM_tomo/tomo_data'
data_path = '/home/atk13/new_project_20471'
tomo_lst = 'tomograms_lst - Local Tomograms for FSC.csv'
df = pd.read_csv(tomo_lst)
for index,row in df.iterrows():
proj = 'microscopy_%i' % int(row['MPID'])
tomo = row['Tomogram']
thickness = row['Thickness']
pixel_size = row['Pixel Size bin 4 (nm)']
tomo_path = os.sep.join([data_path, proj, 'processed_data',tomo,'txbr-backprojection','limited-bin4'])
for num_ang in num_angs:
for max_ang in max_angs:
a_dir = os.sep.join([tomo_path,'%i-limited[%.1f_-%.1f]_fsc-a' % (num_ang,max_ang,max_ang)])
if len(os.listdir(a_dir)) == 1:
a_path = os.sep.join([a_dir,os.listdir(a_dir)[0]])
else:
print('Problem dir: %s' % os.listdir(a_dir))
fake = True
# sys.exit('tomo does not have exactly 1 output file')
b_dir = os.sep.join([tomo_path,'%i-limited[%.1f_-%.1f]_fsc-b' % (num_ang,max_ang,max_ang)])
if len(os.listdir(b_dir)) == 1:
b_path = os.sep.join([b_dir,os.listdir(a_dir)[0]])
else:
print('Problem dir: %s' % os.listdir(b_dir))
#sys.exit('tomo dir does not have exactly 1 output file')
fake = True
ofn = os.sep.join([output_dir, 'FSC3D_%s_%s_%i-limited[%.1f_-%.1f].csv' % (thickness, tomo,num_ang,max_ang,max_ang)])
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print('Calculating FSC for %s' % ofn)
if not fake:
if overwrite or not os.path.isfile(ofn):
resolution_measure(a_path, b_path, num_cores, cube_size, pixel_size = pixel_size, sub_region = sub_region, sub_sampling_zxy = sub_sampling_zxy, ofn=ofn)