Skip to content

hsouri/bob-classification

Repository files navigation

BoB-Classification

This repository is the official implementation of Image Classification task in the Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks.

Dependencies

Version Control of Python libraries in environment.yml file. To create a virtual environment:

conda env create -f environment.yml

Running instructions

Following instructions introduce how to evaluate pretrained backbones with different classficaition tasks. We provide various datasets and pre-trained models.

Finetuning (convnext_xl pretrained with vicregl)

python3 -m torch.distributed.launch --nproc_per_node=8 train.py /path/to/ImageNet/ILSVRC2012 --dataset ImageNet --config ./model_configs/convnext_xl_vicreg_ft.yaml --lr 1e-3 --experiment convnext_xl_vicreg_ft_lr1e-3

1% and 10% of ImageNet training (stable diffusion pretrained model)

python3 -m torch.distributed.launch --nproc_per_node=8 train_semi.py /path/to/ImageNet/ILSVRC2012 --dataset semiimagenet --n_shot 10 --config ./model_configs/vit_small_patch16_224_dino_semi.yaml -b 16 --experiment semi_sd_adamw_lr2.5e-4_wd5e-2_ld65_shot10_da --weight-decay 0.05 --lr 2.5e-4 --drop-path 0.1 --epochs 60 --model stable_diffusion_v1 --layer-decay 0.65 --aa rand-m9-mstd0.5-inc1 --accum_iter 4

Linear Probing (CLIP trained resnet50)

python3 -m torch.distributed.launch --nproc_per_node=4 linear_probe.py --data_path /fs/cml-datasets/ImageNet/ILSVRC2012/ --batch_size 512 --epochs 90 --blr 0.1 --weight_decay 0.0 --dist_eval --model resnet50_clip

This code is based on the implementations of MAE, TIMM

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages