Skip to content

houweidong/models

Repository files navigation

README

This is the repository for camera related algorithm models that are used in Elevator Ads Platform.

Requirements

The following core dependencies need to be installed manually or using Docker:

  • CUDA 9
  • CuDNN 7
  • Python 3.5+
  • OpenCV
  • Pytorch >= 0.3.0

The following core depenencies can be installed through pip3 install -r requirements.txt:

  • Chainer
  • Mxnet

Docker

Installation

To use Docker for development, install the following dependencies on host:

  • Nvidia Driver
  • Docker
  • Nvidia-Docker 2

You can also use this script to setup the host machine automatically.

Running

Start the Docker container using:

sudo docker run -ti --runtime=nvidia --privileged -e="DISPLAY" -e="QT_X11_NO_MITSHM=1" -v="/tmp/.X11-unix:/tmp/.X11-unix:rw" --ipc=host -p 0.0.0.0:6006:6006 -p 8888:8888 -v /dev/video0:/dev/video0 --name eap-models deepgaze/eap-models-dev bash

You may also want to add extra -v options to map codes/IDE/data into docker container.

To restart the container, simply run:

sudo docker start -i eap-models

To open multiple docker terminal to the same container, simply run:

sudo docker exec -ti eap-models bash

Preparation

Gaze Estimation

  • Download GazeCapture dataset
  • Untar all tar files in the dataset

Face Detection

  • Download pretrained models

bash facedet/script/download_models.sh

Face Attribute

  • Download pretrained models

bash faceattr/script/download_models.sh

Training

Gaze Estimation

Assuming the GazeCapture dataset is located at ~/fast-storage/GazeCapture, start training with

python3 train_gaze.py --root_path ~/fast-storage/GazeCapture --result_path results --dataset gazecapture --model resnet --model_depth 18 --batch_size 1024 --pretrain --log_dir results --n_epochs 50 --lr 2e-5 --n_thread 12 --checkpoint 5

Check gaze/opts.py for more training options.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages