Skip to content

Commit

Permalink
update group action
Browse files Browse the repository at this point in the history
  • Loading branch information
hooyuser committed Jul 30, 2024
1 parent 37ddb0a commit f857497
Show file tree
Hide file tree
Showing 3 changed files with 137 additions and 83 deletions.
65 changes: 47 additions & 18 deletions category_theory.tex
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ \section{Category}
\end{example}


\begin{definition}{Opposite Category}{}
\begin{definition}{Opposite Category}{functor_op}
Suppose $\mathsf{C}$ is a category. The \textbf{opposite category} $\mathsf{C}^{\mathrm{op}}$ is defined as follows
\begin{itemize}
\item Objects: $\mathrm{Ob}(\mathsf{C}^{\mathrm{op}})=\mathrm{Ob}(\mathsf{C})$
Expand Down Expand Up @@ -120,7 +120,7 @@ \section{Category}
\mathsf{D} \& \& \& \mathsf{D}^{\mathrm{op}}
\end{tikzcd}
\]
The functor ${}^{\mathrm{op}}$ is an involution, i.e. ${}^{\mathrm{op}}\circ {}^{\mathrm{op}}=\mathrm{id}_{\mathsf{CAT}}$. Hence ${}^{\mathrm{op}}$ is an automorphism of $\mathsf{CAT}$.
The functor ${}^{\mathrm{op}}$ is an involution, i.e. ${}^{\mathrm{op}}\circ {}^{\mathrm{op}}=\mathrm{id}_{\mathsf{CAT}}$. Hence ${}^{\mathrm{op}}\in \mathrm{Aut}(\mathsf{CAT})$.
\end{example}


Expand Down Expand Up @@ -2530,26 +2530,11 @@ \section{Limit and Colimit}
\end{theorem}


The next result shows that functor categories inherit limits and colimits, defined ``objectwise" in the target category: that is, given a $\mathsf{J}$-indexed diagram in $[\mathsf{A},\mathsf{C}]$ whose objects are functors $F_j : \mathsf{A} \to \mathsf{C}$, the value of the limit functor $\varprojlim_{j\in J} F_j : \mathsf{A} \to \mathsf{C}$ at an object $a \in \mathsf{A}$ is the limit of the $\mathsf{J}$-indexed diagram in $\mathsf{C}$ whose objects are the objects $F_j(a) \in \mathrm{Ob}(C)$.

\begin{proposition}{Evaluation Functor Preserves Limits}{ev_functor_preserves_limits}
Let $\mathsf{A}$ be a small category and $\mathsf{C}$ be a category. Given a diagram $F: \mathsf{J} \to\left[\mathsf{A},\mathsf{C}\right]$ with $\mathsf{J}$ small, if for any $a\in \mathsf{A}$, the diagram
\[
\mathrm{ev}_a \circ F:\mathsf{J}\xrightarrow{\quad F\quad}\left[\mathsf{A},\mathsf{C}\right]\xrightarrow{\quad\mathrm{ev}_a\quad}\mathsf{C}
\]
has a limit, then
\begin{enumerate}[(i)]
\item $\varprojlim F$ exists.
\item For any $a\in \mathsf{A}$, $\mathrm{ev}_a$ preserves $\varprojlim F$.
\end{enumerate}
\end{proposition}


\begin{proposition}{}{}
Suppose $\mathsf{A}$ is a small category. Denote $\mathsf{Ob}(A)=\mathsf{Disc}\left(\mathrm{Ob} \left(\mathsf{A}\right)\right)$. Then the forgetful functor $U:[\mathsf{A},\mathsf{C}] \rightarrow \left[\mathsf{Ob}(A), \mathsf{C}\right]\cong \prod\limits_{a\in \mathrm{Ob} \left(\mathsf{A}\right)}\mathsf{C}$
\[
\begin{tikzcd}[ampersand replacement=\&]
[\mathsf{A},\mathsf{C}] \&[-25pt]\&[+10pt]\&[-30pt]\prod\limits_{i\in \mathrm{Ob} \left(\mathsf{A}\right)}\mathsf{C}\&[-30pt]\&[-30pt] \\ [-15pt]
[\mathsf{A},\mathsf{C}] \&[-25pt]\&[+10pt]\&[-30pt]\prod\limits_{a\in \mathrm{Ob} \left(\mathsf{A}\right)}\mathsf{C}\&[-30pt]\&[-30pt] \\ [-15pt]
F \arrow[dd, Rightarrow, "\theta"{name=L, left}]
\&[-25pt] \& [+10pt]
\& [-30pt]\left(F(a)\right)_{a\in \mathrm{Ob} \left(\mathsf{A}\right)}\arrow[dd, "\prod\limits_{a\in \mathrm{Ob} \left(\mathsf{A}\right)} \theta_{a}"{name=R}] \\ [-10pt]
Expand All @@ -2559,6 +2544,32 @@ \section{Limit and Colimit}
\]
strictly creates all limits and colimits that exist in $\mathsf{C}$. These limits are defined objectwise, meaning that for each $a \in \mathrm{A}$, the evaluation functor $\mathrm{ev}_a:[\mathsf{A},\mathsf{C}] \rightarrow \mathsf{C}$ preserves all limits and colimits existing in $\mathsf{C}$.
\end{proposition}
\begin{proof}
Given a diagram $F:\mathsf{J}\to [\mathsf{A},\mathsf{C}]$, suppose the limit $\varprojlim U\circ F$ exists and can be written as
\[
\left((L(a))_{a \in \operatorname{Ob}(\mathsf{A})},\left(\ell_j=\left(\ell_{j, a}:L(a)\to F(j)(a)\right)_{a \in \operatorname{Ob}(\mathsf{A})}\right)_{j \in \operatorname{Ob}(\mathsf{J})}\right).
\]

\end{proof}


The next result shows that functor categories inherit limits and colimits, defined ``objectwise" in the target category: that is, given a $\mathsf{J}$-indexed diagram in $[\mathsf{A},\mathsf{C}]$ whose objects are functors $F_j : \mathsf{A} \to \mathsf{C}$, the value of the limit functor $\varprojlim_{j\in J} F_j : \mathsf{A} \to \mathsf{C}$ at an object $a \in \mathsf{A}$ is the limit of the $\mathsf{J}$-indexed diagram in $\mathsf{C}$ whose objects are the objects $F_j(a) \in \mathrm{Ob}(\mathsf{C})$, which reads as follows:
\[
\left(\varprojlim_{j\in J} F_j\right)(a) = \varprojlim_{j\in J} F_j(a).
\]

\begin{proposition}{Evaluation Functor Preserves Limits}{ev_functor_preserves_limits}
Let $\mathsf{A}$ be a small category and $\mathsf{C}$ be a category. Given a diagram $F: \mathsf{J} \to\left[\mathsf{A},\mathsf{C}\right]$ with $\mathsf{J}$ small, if for any $a\in \mathsf{A}$, the diagram
\[
\mathrm{ev}_a \circ F:\mathsf{J}\xrightarrow{\quad F\quad}\left[\mathsf{A},\mathsf{C}\right]\xrightarrow{\quad\mathrm{ev}_a\quad}\mathsf{C}
\]
has a limit, then
\begin{enumerate}[(i)]
\item $\varprojlim F$ exists.
\item For any $a\in \mathsf{A}$, $\mathrm{ev}_a$ preserves $\varprojlim F$.
\end{enumerate}
\end{proposition}



\begin{proposition}{Limits Commute with Limits}{}
Expand Down Expand Up @@ -2674,6 +2685,22 @@ \section{Limit and Colimit}
\]
\end{definition}

\begin{lemma}{}{}
Let $F:\mathsf{C}\to\mathsf{D}$ and $G:\mathsf{D}\to\mathsf{E}$ be functors. If both $\varinjlim G \circ F$ and $\varinjlim G$ exist, then there exists a natural morphism between colimits
\[
\varinjlim G \circ F \longrightarrow \varinjlim G
\]
\end{lemma}
\begin{proof}
Suppose $\mu: G\circ F \Rightarrow \diagfunctor \varinjlim_{\mathsf{C}} G\circ F $ is a colimit cone in $\mathsf{Cocone}(G\circ F,\textsf{E})$ and $\nu: G\Rightarrow \diagfunctor \varinjlim_{\mathsf{D}} G$ is a colimit cone in $\mathsf{Cocone}(G,\textsf{E})$. Then by universal property of $\varinjlim G\circ F$, we can get the following commutative diagram
\[
\begin{tikzcd}
& \varinjlim_{\mathsf{D}} G \\
G(F(c)) \arrow[r, "\mu_c"'] \arrow[ru, "\nu_{F(c)}"] & \varinjlim_{\mathsf{C}} G\circ F \arrow[u, dashed]
\end{tikzcd}
\]
\end{proof}

\begin{proposition}{Equivalent Characterization of Final Functor}{}
Let $F:\mathsf{C}\to\mathsf{D}$ be a functor. The following are equivalent:
\begin{enumerate}[(i)]
Expand All @@ -2692,6 +2719,8 @@ \section{Limit and Colimit}
A functor $F:\mathsf{C}\to\mathsf{D}$ is \textbf{initial} if the opposite functor $F^{\text{op}}:\mathsf{C}^{\text{op}}\to\mathsf{D}^{\text{op}}$ is final.
\end{definition}



\subsection{Product and Coproduct}
\begin{definition}{Binary Product}{}
\begin{center}
Expand Down
Loading

0 comments on commit f857497

Please sign in to comment.