Skip to content

Commit

Permalink
finitely generated object
Browse files Browse the repository at this point in the history
  • Loading branch information
hooyuser committed Dec 29, 2023
1 parent c40618a commit 75b0f40
Showing 1 changed file with 107 additions and 15 deletions.
122 changes: 107 additions & 15 deletions algebraic_construction.tex
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ \chapter*{Notation Conventions}
\item $\mathsf{Ring}$: the category of rings.
\item $\mathsf{CRing}$: the category of commutative rings.
\item $\mathsf{Fld}$: the category of fields.
\item $R\text{-}\mathsf{Mod}$: the category of $R$-modules, where $R\in \mathrm{Ob}\left(\mathsf{Ring}\right)$.
\item $R\text{-}\mathsf{Mod}$: the category of left $R$-modules, where $R\in \mathrm{Ob}\left(\mathsf{Ring}\right)$.
\item $K\text{-}\mathsf{Vect}$: the category of $K$-vector spaces, where $K\in \mathrm{Ob}\left(\mathsf{Fld}\right)$.
\item $R\text{-}\mathsf{Alg}$: the category of associative $R$-algebras, where $R\in \mathrm{Ob}\left(\mathsf{CRing}\right)$.
\item $R\text{-}\mathsf{CAlg}$: the category of commutative $R$-algebras, where $R\in \mathrm{Ob}\left(\mathsf{CRing}\right)$.
Expand Down Expand Up @@ -257,6 +257,30 @@ \section{Function}
\item $A\subseteq f^{-1}(f(A))\ $, $B\supseteq f(f^{-1}(B))$.
\end{itemize}
}
\prop{Equivalent Characterization of Injections}{
Let $f:X\to Y$ be a map. The following are equivalent:
\begin{enumerate}[(i)]
\item $f$ is injective.
\item $f$ has a left inverse: there exists a map $h:Y\to X$ such that $h\circ f=\mathrm{id}_X$.
\item $f$ is left-cancellable: if $f\circ g_1=f\circ g_2$, then $g_1=g_2$.
\end{enumerate}
}
\prop{Equivalent Characterization of Surjections}{
Let $f:X\to Y$ be a map. The following are equivalent:
\begin{enumerate}[(i)]
\item $f$ is surjective.
\item $f$ has a right inverse: there exists a map $h:Y\to X$ such that $f\circ h=\mathrm{id}_Y$.
\item $f$ is right-cancellable: if $g_1\circ f=g_2\circ f$, then $g_1=g_2$.
\end{enumerate}
}

\prop{}{
Suppose $f:X\to Y$ and $g:Y\to Z$ are maps. We have
\begin{enumerate}[(i)]
\item If $g\circ f$ is injective, then $f$ is injective.
\item If $g\circ f$ is surjective, then $g$ is surjective.
\end{enumerate}
}

\section{Grothendieck Universe}
\dfn{Grothendieck Universe}{
Expand Down Expand Up @@ -2446,7 +2470,7 @@ \section{Basic Concepts}

\chapter{Commutative Ring}
\section{Basic Concepts}
A commutative ring $R$ is a commutative $R$-algebra. And we have a categorical isomorphism
A commutative ring $R$ is a commutative $R$-algebra and accordingly a commutative $\mathbb{Z}$-algebra. Furthermore we have a categorical isomorphism
\[
\mathsf{CRing}\cong \mathbb{Z}\text{-}\mathsf{CAlg}.
\]
Expand Down Expand Up @@ -2751,6 +2775,11 @@ \section{Polynomial Ring}
}

\section{Construction}
\subsection{Free Object}
\dfn{Free Commutative Ring}{
Since $\mathsf{CRing}\cong \mathbb{Z}\text{-}\mathsf{CAlg}$, the \textbf{free commutative ring} on a set $X$ is isomorphic to the polynomial ring $\mathbb{Z}[X]$, which coincides with the free commutative $\mathbb{Z}$-algebra on $X$.
}
\subsection{Localization}
\dfn{Multuplicative Subset}{
Let $R$ be a commutative ring. A subset $S\subseteq R$ is called \textbf{multiplicative} if $S$ is monoid under the multiplication of $R$, i.e.
\begin{enumerate}[(i)]
Expand Down Expand Up @@ -3160,7 +3189,7 @@ \section{Basic Concepts}
\end{tikzcd}
\]
}
In particular, homomorphism $R\to S$ makes $S$ an $R$-module.
In particular, ring homomorphism $R\to S$ makes $S$ an $R$-module.

\dfn{Noetherian Module}{
Let $R$ be a commutative ring, and let $M$ be an $R$-module. We say $M$ is \textbf{Noetherian} if one of the following equivalent conditions holds:
Expand Down Expand Up @@ -3195,9 +3224,24 @@ \subsection{Free Object}
one of the following equivariant conditions holds:
\begin{enumerate}[(i)]
\item there exist $x_1, \ldots, x_n \in M$ such that every element of $M$ is an $R$-linear combination of the $x_i$.
\item there exists an epimorphism $R^{\oplus n} \rightarrow M$ for some $n \in \mathbb{N}$.
\item there exists an epimorphism $R^{\oplus n} \rightarrow M$ for some $n \in \mathbb{Z}_+$.
\item there exists an exact sequence
\[
R^{\oplus n} \rightarrow M \rightarrow 0
\]
for some $n\in \mathbb{N}$.
\item $S\cong R^{\oplus n}/M$ for some $n\in \mathbb{Z}_+$ and some submodule $M$ of $R^{\oplus n}$.
\end{enumerate}
}
\dfn{Finitely Presented Module}{
We say $M$ is a \textbf{finitely presented $R$-module} if
there exists an exact sequence
\[
R^{\oplus m} \rightarrow R^{\oplus n} \rightarrow M \rightarrow 0
\]
for some $m, n\in \mathbb{Z}_+$.
}

\subsection{Localization}
\dfn{Localization of a Module}{
Let $R$ be a commutative ring, $S$ be a multiplicative set in $R$, and $M$ be an $R$-module. The \textbf{localization of the module} $M$ by $S$, denoted $S^{-1}M$, is an $S^{-1}R$-module that is constructed exactly as the localization of $R$, except that the numerators of the fractions belong to $M$. That is, as a set, it consists of equivalence classes, denoted $\frac{m}{s}$, of pairs $(m, s)$, where $m\in M$ and $s\in S$, and two pairs $(m, s)$ and $(n, t)$ are equivalent if there is an element $u$ in $S$ such that
Expand Down Expand Up @@ -3399,18 +3443,39 @@ \section{Basic Properties}
$$
r\cdot a=\sigma(r)a
$$
for all $r\in R$ and $a\in A$.
We usually call associative $R$-algebra as $R$-algebra for short.
}
We can check that
for all $r\in R$ and $a\in A$. \\
We can check that
\[
r\cdot (ab)=\sigma(r)ab=(r\cdot a)b=\sigma(r)ab=a\left(\sigma(r)b\right) =a(r\cdot b).
r\cdot (ab)=\sigma(r)ab=(r\cdot a)b=\sigma(r)ab=a\left(\sigma(r)b\right) =a(r\cdot b),
\]
which justifies the naming ``associative".
}
We usually call associative $R$-algebra as $R$-algebra for short.

\prop{Commutative Ring homomorphism $R\to S$ induces functor $S\text{-}\mathsf{Alg}\to R\text{-}\mathsf{Alg}$}{
Let $R$ and $S$ be commutative rings with a ring homomorphism $f: R\to S$. Then every $S$-algebra $A$ is an $R$-algebra by defining $ra = f(r)a$, or equivalently through $R\to S\to Z(A)$. This defines a functor $F: S\text{-}\mathsf{Alg}\to R\text{-}\mathsf{Alg}$, which is identify map on objects and morphisms.
\[
\begin{tikzcd}[ampersand replacement=\&]
S\text{-}\mathsf{Alg}\&[-25pt]\&[+10pt]\&[-30pt] R\text{-}\mathsf{Alg}\&[-30pt]\&[-30pt] \\ [-15pt]
A \arrow[dd, "g"{name=L, left}]
\&[-25pt] \& [+10pt]
\& [-30pt] A\arrow[dd, "g"{name=R}] \&[-30pt]\\ [-10pt]
\& \phantom{.}\arrow[r, "F", squigarrow]\&\phantom{.} \& \\[-10pt]
B \& \& \& B\&
\end{tikzcd}
\]
}
In particular, commutative ring homomorphism $R\to S$ makes $S$ an $R$-algebra.

\section{Construction}
\subsection{Quotient Object}

\dfn{Quotient Algebra}{
Let $A$ be an $R$-algebra and $\mathfrak{a}$ be a two-sided ideal of $A$. Since $\mathfrak{a}$ is an $R$-submodule of $A$, the quotient ring $A/\mathfrak{a}$ can also be endowed with an $R$-module structure, which makes $A/\mathfrak{a}$ an $R$-algebra. We call $A/\mathfrak{a}$ the \textbf{quotient algebra} of $A$ by $\mathfrak{a}$.
}

\subsection{Graded Object}

\dfn{$I$-Graded Algebra over an Graded Commutative Ring}{
Let $(I,+)$ be a monoid and $R$ be a $I$-graded commutative ring with grading $(R_i)_{i\in I}$. An \textbf{$I$-graded algebra over graded ring $R$} is an $R$-algebra $A$ together with a family of subalgebras $\left(A_i\right)_{i\in I}$ such that
\begin{enumerate}[(i)]
Expand Down Expand Up @@ -3477,16 +3542,43 @@ \section{Exterior Algebra and Symmetric Algebra}

\section{Commutative Algebra}
\dfn{Commutative Algebra}{
Let $R$ be a commutative ring. A \textbf{commutative $R$-algebra} is an $R$-algebra where the multiplication is commutative.
Let $R$ be a commutative ring. A \textbf{commutative $R$-algebra} is an $R$-algebra where the multiplication is commutative. Or equivalently, a commutative $R$-algebra is a commutative ring $A$ together with a ring homomorphism $R\to A$. Hence there is a category isomorphism $R\text{-}\mathsf{CAlg}\cong \left(R/\mathsf{CRing}\right)$.
}


\dfn{Free Commutative Algebra}{
Let $R$ be a commutative ring.
\begin{tikzcd}[ampersand replacement=\&]
\& X \arrow[ld, "\iota"'] \arrow[rd, "f"] \& \\
F \arrow[rr, "\hat{f}"] \& \& A
\end{tikzcd}
Let $X$ be a set and $R$ be a commutative ring. The \textbf{free commutative $R$-algebra} on $X$, denoted by $\mathrm{Free}_{R\text{-}\mathsf{CAlg}}(X)$, together with a map $\iota:X\to \mathrm{Free}_{R\text{-}\mathsf{CAlg}}(X)$, is defined by the following universal property: for any commutative $R$-algebra $A$ and any map $f:X\to A$, there exists a unique homomorphism $\widetilde{f}:\mathrm{Free}_{R\text{-}\mathsf{CAlg}}(X)\to A$ such that the following diagram commutes
\begin{center}
\begin{tikzcd}[ampersand replacement=\&]
\mathrm{Free}_{R\text{-}\mathsf{CAlg}}(X)\arrow[r, dashed, "\exists !\,\widetilde{f}"] \& A\\[0.3cm]
X\arrow[u, "\iota"] \arrow[ru, "f"'] \&
\end{tikzcd}
\end{center}
The free $R$-module $\mathrm{Free}_{R\text{-}\mathsf{CAlg}}(X)$ can be contructed as the polynomial algebra $R[X]$.
}
\dfn{Finite-type Commutative Algebra}{
Let $R\to A$ be a commutative ring homomorphism. We say $A$ is a \textbf{finite-type $R$-algebra}, or that $R\to A$ is \textbf{of finite type}, if one of the following equivalent conditions holds:
\begin{enumerate}[(i)]
\item there exists a finite set of elements $a_1,\cdots,a_n$ of A such that every element of $A$ can be expressed as a polynomial in $a1,\cdots,an$, with coefficients in $K$.
\item there exists a finite set $X$ such that $A\cong R[X]/I$ as $R$-algebra where $I$ is an ideal of $R[X]$.
\end{enumerate}

}

\prop{}{
Let $A$ be a $R$-algebra. If $A$ is finitely generated as an $R$-module, then $A$ is a finite-type $R$-algebra.
}
\pf{
This holds because if each element of $A$ can be expressed as an $R$-linear combination of finitely many elements of $A$, then each element of $A$ can also be expressed as a polynomial in finitely many elements of $A$ with coefficients in $R$.

An alternative proof can be given by utilizing the universal property of the free contruction. Suppose $A$ is finitely generated as an $R$-module. Then there exists some a finite set $X=\{x_1,\cdots,x_n\}$ and a surjective $R$-linear map $\varphi:R^{\oplus X}\to A$. Define $f=\varphi\circ \iota$, where $\iota:X\to R^{\oplus X}$ is the inclusion map.
\begin{center}
\begin{tikzcd}[ampersand replacement=\&]
R^{\oplus X}\arrow[r, dashed, "\exists !\,\widetilde{j}"] \&R[X]\arrow[r, dashed, "\exists !\,\widetilde{f}"] \& A\\[0.3cm]
\& X\arrow[ul, "\iota"] \arrow[u, "j"] \arrow[ru, "f:=\varphi\circ \iota"'] \&
\end{tikzcd}
\end{center}
The universal property of free $R$-module induces a unique $R$-linear map $\widetilde{j}:R^{\oplus}\to R[X]$ such that $j=\widetilde{j}\circ \iota$. And the universal property of free commutative $R$-algebra induces a unique $R$-algebra homomorphism $\widetilde{f}:R[X]\to A$ such that $f=\widetilde{f}\circ j$. Note $f=\varphi\circ \iota=\left(\widetilde{f}\circ \widetilde{j}\right)\circ \iota$. By the uniqueness of the universal property of $R^{\oplus}$, we have $\widetilde{f}\circ \widetilde{j}=\varphi$. Since $\widetilde{f}\circ \widetilde{j}$ is surjective, $\widetilde{f}$ must be surjective, which implies $A$ is a finite-type $R$-algebra.
}

\chapter{Field Theory}
Expand Down

0 comments on commit 75b0f40

Please sign in to comment.