Skip to content

Commit

Permalink
add unit and counit
Browse files Browse the repository at this point in the history
  • Loading branch information
hooyuser committed Jan 11, 2024
1 parent ce02ca0 commit 3c021ae
Show file tree
Hide file tree
Showing 3 changed files with 60 additions and 24 deletions.
2 changes: 2 additions & 0 deletions algebraic_construction.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@

\input{preamble}

\includeonly{category_theory}

%\tikzexternalize % activate!
\usepackage[page,toc,titletoc,title]{appendix}
\usepackage{chemfig}
Expand Down
1 change: 1 addition & 0 deletions appendices.tex
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
$\mathsf{Grp}$ & \multicolumn{2}{c}{$\{0\}$} \\ \midrule
$R\text{-}\mathsf{Mod}$ & \multicolumn{2}{c}{$\{0\}$} \\ \midrule
$\mathsf{Ring}$ & \multicolumn{1}{c|}{$\mathbb{Z}$} & \multicolumn{1}{c}{$\{0\}$} \\ \midrule
$R\text{-}\mathsf{Alg}$ & \multicolumn{1}{c|}{$R$} & \multicolumn{1}{c}{$\{0\}$} \\ \midrule
$\mathsf{Sch}$ & \multicolumn{1}{c|}{$\spec\mathbb{Z}$} & \multicolumn{1}{c}{$\spec \{0\}=\varnothing$ } \\ \midrule
$\mathsf{Field}_p$ & \multicolumn{1}{c|}{\begin{minipage}{.3\linewidth}$$
\begin{array}{ll}
Expand Down
81 changes: 57 additions & 24 deletions category_theory.tex
Original file line number Diff line number Diff line change
Expand Up @@ -904,28 +904,28 @@ \section{Adjoint Functor}
Let $\left(L,R,\varphi\right)$ be an adjoint pair of functors. The \textbf{adjunction unit} $\eta$ of this adjunction is a natural transformation
\begin{center}
\begin{tikzcd}[ampersand replacement=\&]
\mathsf{C} \arrow[r, "\mathrm{id}_{\mathsf{C}}"{name=A, above}, bend left=40] \arrow[r, "R\circ L"'{name=B, below}, bend right=40]
\mathsf{C} \arrow[r, "\scalebox{1.2}{$\mathrm{id}_{\mathsf{C}}$}"{name=A, above}, bend left=40] \arrow[r, "\scalebox{1.2}{$R\circ L$}"'{name=B, below}, bend right=40]
\&[+25pt] \mathsf{C}
\arrow[Rightarrow, shorten <=3.5pt, shorten >=3.5pt, from=A.south-|B, to=B, "\eta"]
\end{tikzcd}
\hspace{3cm}
\begin{tikzpicture}[x=0.6cm,y=0.6cm, baseline=(current bounding box.center)]
\fill[fill=blue!20] (-2.5,0) rectangle (2.5,2.8);
\filldraw[fill=green!20] (-1,2) arc (180:360:1);
\fill[fill=green!20] (-1,2) rectangle (1,2.8);
\node[above=2pt] at (-1,2.8) {$F$};
\node[above=2pt] at (1,2.8) {$G$};
\node[above=2pt] at (0,1) {$\eta$};
\draw[fill=black] (0, 1) circle (0.07);
\draw (-1,2) -- (-1,2.8);
\draw (1,2) -- (1,2.8);
\begin{scope}
\clip (-2.5,0.2) rectangle (2.5,3);
\fill[fill=green!20] (-2.5,0.2) rectangle (2.5,3);
\draw[fill=blue!20, rounded corners=0.6cm, line width=0.5pt] (-1,-1) rectangle (1, 2);
\end{scope}
\node[below=2pt] at (-1,0.2) {$L$};
\node[below=2pt] at (1,0.2) {$R$};
\node[above=1pt] at (0,2) {$\eta$};
\draw[fill=black] (0, 2) circle (0.07);
\end{tikzpicture}
\end{center}
defined by $\eta_X:=\varphi_{X,L(X)}(\mathrm{id}_{L(X)})$ for any $X\in \mathrm{Ob}(\mathsf{C})$, where $\varphi_{X,L(X)}$ is the natural bijection
defined by $\eta_X:=\varphi_{X,L(X)}\left(\mathrm{id}_{L(X)}\right)$ for any $X\in \mathrm{Ob}(\mathsf{C})$, where $\varphi_{X,L(X)}$ is the natural bijection
$$
\begin{aligned}
\varphi_{X,L(X)}:\operatorname{Hom}_{\mathsf{D}}\left(L(X), L(X)\right) & \xlongrightarrow{\sim}\operatorname{Hom}_{\mathsf{C}}(X, RL(X)) \\
\operatorname{id}_{F X} & \longmapsto \eta_X
\operatorname{id}_{F(X)} & \longmapsto \eta_X
\end{aligned}
$$
The \textbf{adjunction counit} $\varepsilon$ of this adjunction is a natural transformation
Expand All @@ -937,27 +937,60 @@ \section{Adjoint Functor}
\end{tikzcd}
\hspace{3cm}
\begin{tikzpicture}[x=0.6cm,y=0.6cm, baseline=(current bounding box.center)]
\fill[fill=blue!20] (-2.5,0) rectangle (2.5,2.8);
\filldraw[fill=green!20] (-1,2) arc (180:360:1);
\fill[fill=green!20] (-1,2) rectangle (1,2.8);
\node[above=2pt] at (-1,2.8) {$F$};
\node[above=2pt] at (1,2.8) {$G$};
\node[above=2pt] at (0,1) {$\eta$};
\draw[fill=black] (0, 1) circle (0.07);
\draw (-1,2) -- (-1,2.8);
\draw (1,2) -- (1,2.8);
\begin{scope}
\clip (-2.5,0) rectangle (2.5,2.8);
\fill[fill=blue!20] (-2.5,0) rectangle (2.5,2.8);
\draw[fill=green!20, rounded corners=0.6cm, line width=0.5pt] (-1,1) rectangle (1, 4);
\end{scope}
\node[above=2pt] at (-1,2.8) {$R$};
\node[above=2pt] at (1,2.8) {$L$};
\node[above=2pt] at (0,1) {$\varepsilon$};
\draw[fill=black] (0, 1) circle (0.07);
\end{tikzpicture}
\end{center}
defined by $\varepsilon_Y:=\varphi_{R(Y),Y}^{-1}\left(\mathrm{id}_{R(Y)}\right)$ for any $Y\in \mathrm{Ob}(\mathsf{D})$, where $\varphi_{R(Y),Y}^{-1}$ is the natural bijection
$$
\begin{aligned}
\varphi_{R(Y),Y}^{-1}:\operatorname{Hom}_{\mathsf{D}}\left(R(Y), R(Y)\right) & \xlongrightarrow{\sim}\operatorname{Hom}_{\mathsf{C}}(LR(Y), R(Y)) \\
\mathrm{id}_{R(Y)} & \longmapsto \varepsilon_Y
\end{aligned}
$$
}
\pf{
The naturality square of $\eta$ means that for any morphism $g:X_1\to X_2$ in $\mathsf{C}$, the following diagram commutes
By naturality of $\varphi$, for any morphism $g:X_2\to X_1$ in $\mathsf{C}$, we have the following commutative diagram
\[
\begin{tikzcd}[ampersand replacement=\&]
\mathrm{id}_{L(X_1)}\arrow[d,mapsto]\&[-30pt]\ni\&[-29pt]{\operatorname{Hom}_{\mathsf{D}}\left(L(X_1), L(X_1)\right) } \arrow[d, "{\varphi_{X_1,L(X_1)}}"'] \arrow[r,"{\left(L(g)\right)^*}"] \& [+12pt]{\operatorname{Hom}_{\mathsf{D}}\left(L(X_2), L(X_1)\right) } \arrow[d, "{\varphi_{X_2,L(X_1)}}"] \&[+12pt] {\operatorname{Hom}_{\mathsf{D}}\left(L(X_2), L(X_2)\right) } \arrow[d, "{\varphi_{X_2,L(X_2)}}"] \arrow[l,"{\left(L(g)\right)_*}"'] \&[-28pt]\in\&[-28pt]\mathrm{id}_{L(X_2)}\arrow[d,mapsto]\\[+20pt]
\eta_{X_1}\&\ni\&{\operatorname{Hom}_{\mathsf{C}}(X_1, RL(X_1))} \arrow[r,"g^*"] \& {\operatorname{Hom}_{\mathsf{C}}(X_2, RL(X_1))} \& {\operatorname{Hom}_{\mathsf{C}}(X_2, RL(X_2))} \arrow[l, "\left(RL(g)\right)_*"'] \&[-30pt]\in\&[-30pt]\eta_{X_2}
\end{tikzcd}
\]
Since
\[
(L(g))^*\left(\mathrm{id}_{L(X_1)}\right)=L(g)=(L(g))_*\left(\mathrm{id}_{L(X_2)}\right),
\]
we have
\[
g^*(\eta_{X_1})=\varphi_{X_2,L(X_1)}(L(g))=\left(RL(g)\right)_*(\eta_{X_2}),
\]
which implies the naturality square of $\eta$ commutes
\[
\begin{tikzcd}[ampersand replacement=\&]
X_1 \arrow[d, "{\eta_{X_1}}"'] \arrow[r, "g"] \&[+50pt]X_2\arrow[d, "{\eta_{X_2}}"] \\[+20pt]
R(L(X_1))\arrow[r, "R(L(g))"']\& R(L(X_2))
X_2 \arrow[d, "{\eta_{X_2}}"'] \arrow[r, "g"] \&[+18pt]X_1\arrow[d, "{\eta_{X_1}}"] \\[+15pt]
RL(X_2)\arrow[r, "RL(g)"']\& RL(X_1)
\end{tikzcd}
\]
Similarly, we can show that for any morphism $h:Y_1\to Y_2$ in $\mathsf{D}$, the naturality square of $\varepsilon$ commutes
\[
\begin{tikzcd}[ampersand replacement=\&]
LR(Y_1) \arrow[d, "{\varepsilon_{Y_1}}"'] \arrow[r, "LR(h)"] \&[+18pt]LR(Y_2)\arrow[d, "{\varepsilon_{Y_2}}"] \\[+15pt]
Y_1\arrow[r, "h"']\& Y_2
\end{tikzcd}
\]
}
\prop{Snake Equations}{

}

\section{Monoidal Category}
\dfn{Monoidal Category}{
A monoidal category is a category $\mathsf{V}$ equipped with
Expand Down

0 comments on commit 3c021ae

Please sign in to comment.