Skip to content

Commit

Permalink
Update category_theory.tex
Browse files Browse the repository at this point in the history
  • Loading branch information
hooyuser committed Aug 12, 2024
1 parent 1fc78e7 commit 3b3b1a0
Showing 1 changed file with 28 additions and 1 deletion.
29 changes: 28 additions & 1 deletion category_theory.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2279,7 +2279,7 @@ \section{Limit and Colimit}
\[
\begin{tikzcd}[ampersand replacement=\&]
[\mathsf{J},\mathsf{C}]\&[-25pt]\&[+10pt]\&[-30pt]\mathsf{C}\&[-30pt]\&[-30pt] \\ [-15pt]
F \arrow[dd, "\theta"{name=L, left}]
F \arrow[dd, "\theta"{name=L, left}, Rightarrow]
\&[-25pt] \& [+10pt]
\& [-30pt]\varprojlim F\arrow[dd, "\varprojlim \theta"{name=R}] \\ [-10pt]
\& \phantom{.}\arrow[r, "\varprojlim", squigarrow]\&\phantom{.} \& \\[-10pt]
Expand All @@ -2299,6 +2299,33 @@ \section{Limit and Colimit}
\]
\end{definition}

\begin{definition}{$\varinjlim$ Functor}{}
Let $\mathsf{J}$ be a small category and $\mathsf{C}$ be a category. If for any functor $F:\mathsf{J}\to\mathsf{C}$, $\varinjlim F$ exists, then we have a functor
\[
\begin{tikzcd}[ampersand replacement=\&]
[\mathsf{J},\mathsf{C}]\&[-25pt]\&[+10pt]\&[-30pt]\mathsf{C}\&[-30pt]\&[-30pt] \\ [-15pt]
F \arrow[dd, "\theta"{name=L, left}, Rightarrow]
\&[-25pt] \& [+10pt]
\& [-30pt]\varinjlim F\arrow[dd, "\varinjlim \theta"{name=R}] \\ [-10pt]
\& \phantom{.}\arrow[r, "\varinjlim", squigarrow]\&\phantom{.} \& \\[-10pt]
G \& \& \& \varinjlim G
\end{tikzcd}
\]
where $\varinjlim \theta$ is induced by the universal property of $\varinjlim F$
\[
\begin{tikzcd}[ampersand replacement=\&, background color=mydefinitbg]
\& \varinjlim F \& \\[+10pt]
F(i) \arrow[ru]\arrow[rr, black!35] \arrow[dd, "\theta_i"'] \& \& F(j) \arrow[lu]\arrow[dd, "\theta_j"] \\[+10pt]
\& \varinjlim G \& \\[+10pt]
G(i) \arrow[ru]\arrow[rr] \& \& G(j)\arrow[lu]
% absulute arrow
\arrow[from=1-2, to=3-2, "\varinjlim \theta"', near end, crossing over]
\end{tikzcd}
\]
\end{definition}



\begin{proposition}{Diagonal is Left Adjoint to Limit: $\diagfunctor\dashv \varprojlim$}{}
Let $\mathsf{J}$ be a small category and $\mathsf{C}$ be a category. If for any functor $F\in[\mathsf{J},\mathsf{C}]$, $\varprojlim F$ exists, then the functor $\varinjlim:\left[\mathsf{J},\mathsf{C}\right]\to\mathsf{C}$ is right adjoint to the diagonal functor $\diagfunctor:\mathsf{C}\to\left[\mathsf{J},\mathsf{C}\right]$
\[
Expand Down

0 comments on commit 3b3b1a0

Please sign in to comment.