-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* pr-3: applied dos2unix to AssociatorUnitor.g HOMALG_MATRICES.PreferDenseMatrices := true; fixed a bug some changes moved associator example in own file example for pentagram diagram and triangle diagram
- Loading branch information
Showing
2 changed files
with
154 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
LoadPackage( "CatReps" ); | ||
c3c3 := ConcreteCategoryWithEndomorphismGroups( [ [2,3,1], [4,5,6], [,,,5,6,4] ] ); | ||
qc3c3 := RightQuiver( "q(2)[a:1->1,b:1->2,c:2->2]" ); | ||
HOMALG_MATRICES.PreferDenseMatrices := true; | ||
GF3 := HomalgRingOfIntegers( 3 ); | ||
GF3q := PathAlgebra( GF3, qc3c3 ); | ||
rel := [GF3q.a^3-GF3q.1, GF3q.c^3-GF3q.2, GF3q.a*GF3q.b-GF3q.b*GF3q.c];; | ||
kq := Algebroid( GF3q, rel ); | ||
kq2 := kq^2; | ||
counit := rec( a := 1, b := 1, c := 1 ); | ||
comult := rec( a := PreCompose( kq2.ax1, kq2.1xa ), | ||
b := PreCompose( kq2.1xb, kq2.bx2 ), | ||
c := PreCompose( kq2.cx2, kq2.2xc ) ); | ||
AddBialgebroidStructure( kq, counit, comult ); | ||
counit := Counit( kq ); | ||
comult := Comultiplication( kq ); | ||
kmat := MatrixCategory( GF3 ); | ||
CatReps := CategoryOfRepresentations( kq, kmat ); | ||
zero := ZeroObject( CatReps ); | ||
unit := TensorUnit( CatReps ); | ||
V1 := VectorSpaceObject( 5, GF3 ); | ||
V2 := VectorSpaceObject( 4, GF3 ); | ||
d := One(GF3) * [[1,1,0,0,0],[0,1,1,0,0],[0,0,1,0,0],[0,0,0,1,1],[0,0,0,0,1]];; | ||
d := HomalgMatrix( d, 5, 5, GF3 );; | ||
d := VectorSpaceMorphism( V1, d, V1 );; | ||
e := One(GF3) * [[0,1,0,0],[0,0,1,0],[0,0,0,0],[0,1,0,1],[0,0,1,0]];; | ||
e := HomalgMatrix( e, 5, 4, GF3 );; | ||
e := VectorSpaceMorphism( V1, e, V2 );; | ||
f := One(GF3) * [[1,1,0,0],[0,1,1,0],[0,0,1,0],[0,0,0,1]];; | ||
f := HomalgMatrix( f, 4, 4, GF3 );; | ||
f := VectorSpaceMorphism( V2, f, V2 );; | ||
nine := AsObjectInHomCategory( kq, [ V1, V2 ], [ d, e, f ] );; | ||
fortyone := TensorProductOnObjects( nine, nine );; | ||
etas := WeakDirectSumDecomposition( fortyone );; | ||
eta := etas[3];; | ||
six := Source( eta );; | ||
thirtyfive := CokernelObject( eta );; | ||
|
||
#! Now we check the associator if the pentagonal diagram commutes: | ||
|
||
A := six;; | ||
B := nine;; | ||
C := thirtyfive;; | ||
D := fortyone; | ||
#! <An object in The category of functors: Bialgebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)> | ||
ApB := TensorProductOnObjects( A, B );; | ||
BpC := TensorProductOnObjects( B, C );; | ||
CpD := TensorProductOnObjects( C, D ); | ||
#! <An object in The category of functors: Bialgebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)> | ||
sBCD := TensorProductOnObjects( B, CpD );; | ||
rBCD := TensorProductOnObjects( BpC, D );; | ||
AssociatorRightToLeftWithGivenTensorProducts( sBCD, B, C, D, rBCD ); | ||
#! <A morphism in The category of functors: Bialgebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)> | ||
TensorProductOnMorphisms( IdentityMorphism( A ), | ||
AssociatorRightToLeftWithGivenTensorProducts( sBCD, B, C, D, rBCD ) ); | ||
#! <A morphism in The category of functors: Bialgebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)> | ||
sABpCD := TensorProductOnObjects( A, TensorProductOnObjects( BpC, D ) );; | ||
rABpCD := TensorProductOnObjects( TensorProductOnObjects( A, BpC ), D );; | ||
AssociatorRightToLeftWithGivenTensorProducts( sABpCD, A, BpC, D, rABpCD ); | ||
#! <A morphism in The category of functors: Bialgebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)> | ||
sABC := TensorProductOnObjects( A, BpC );; | ||
rABC := TensorProductOnObjects( ApB, C );; | ||
AssociatorRightToLeftWithGivenTensorProducts( sABC, A, B, C, rABC );; | ||
TensorProductOnMorphisms( AssociatorRightToLeftWithGivenTensorProducts( | ||
sABC, A, B, C, rABC ), IdentityMorphism( D ) ); | ||
#! <An isomorphism in The category of functors: Bialgebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)> | ||
PreCompose( | ||
PreCompose( | ||
TensorProductOnMorphisms( | ||
IdentityMorphism( A ), | ||
AssociatorRightToLeftWithGivenTensorProducts( sBCD, B, C, D, rBCD ) | ||
), | ||
AssociatorRightToLeftWithGivenTensorProducts( sABpCD, A, BpC, D, rABpCD )), | ||
TensorProductOnMorphisms( | ||
AssociatorRightToLeftWithGivenTensorProducts( sABC, A, B, C, rABC ), | ||
IdentityMorphism( D ) | ||
) | ||
); | ||
#! <An isomorphism in The category of functors: Bialgebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)> | ||
sABCpD := TensorProductOnObjects( A, TensorProductOnObjects( B, CpD ) );; | ||
rABCpD := TensorProductOnObjects( ApB, CpD );; | ||
AssociatorRightToLeftWithGivenTensorProducts( sABCpD, A, B, CpD, rABCpD );; | ||
sApBCD := TensorProductOnObjects( ApB, CpD );; | ||
rApBCD := TensorProductOnObjects( TensorProductOnObjects( ApB, C ), D );; | ||
AssociatorRightToLeftWithGivenTensorProducts( sApBCD, ApB, C, D, rApBCD ); | ||
#! <A morphism in The category of functors: Bialgebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)> | ||
PreCompose( | ||
AssociatorRightToLeftWithGivenTensorProducts( sApBCD, ApB, C, D, rApBCD ), | ||
AssociatorRightToLeftWithGivenTensorProducts( sApBCD, ApB, C, D, rApBCD ) | ||
); | ||
#! <An isomorphism in The category of functors: Bialgebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)> | ||
IsEqualForMorphisms( | ||
PreCompose( | ||
PreCompose( | ||
TensorProductOnMorphisms( | ||
IdentityMorphism( A ), | ||
AssociatorRightToLeftWithGivenTensorProducts( sBCD, B, C, D, rBCD ) | ||
), | ||
AssociatorRightToLeftWithGivenTensorProducts( sABpCD, A, BpC, D, rABpCD ) | ||
), | ||
TensorProductOnMorphisms( | ||
AssociatorRightToLeftWithGivenTensorProducts( sABC, A, B, C, rABC ), | ||
IdentityMorphism( D ) | ||
) | ||
), | ||
PreCompose( | ||
AssociatorRightToLeftWithGivenTensorProducts( sABCpD, A, B, CpD, rABCpD ), | ||
AssociatorRightToLeftWithGivenTensorProducts( sApBCD, ApB, C, D, rApBCD ) | ||
) | ||
); | ||
#! true | ||
|
||
#! Now we check the left unitor and right unitor if the triangle diagram commutes: | ||
|
||
sAUC := TensorProductOnObjects( A, TensorProductOnObjects( unit, C ) ); | ||
#! <An object in The category of functors: Bialgebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)> | ||
rAUC := TensorProductOnObjects( TensorProductOnObjects( A, unit), C ); | ||
#! <An object in The category of functors: Bialgebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)> | ||
IsEqualForMorphisms( | ||
PreCompose( | ||
AssociatorRightToLeftWithGivenTensorProducts( sAUC, A,unit,C, rAUC ), | ||
TensorProductOnMorphisms( | ||
RightUnitor( A ), | ||
IdentityMorphism( C ) | ||
) | ||
), | ||
TensorProductOnMorphisms( | ||
IdentityMorphism( A ), | ||
LeftUnitor( C ) | ||
) | ||
); | ||
#! true | ||
IsEqualForMorphisms( | ||
TensorProductOnMorphisms( | ||
IdentityMorphism( A ), | ||
LeftUnitor( C ) | ||
), | ||
IdentityMorphism( sAUC ) | ||
); | ||
#! true |