Skip to content

Commit

Permalink
clean up of previous commits
Browse files Browse the repository at this point in the history
  • Loading branch information
Tschitschibor authored and mohamed-barakat committed Aug 17, 2020
1 parent fde2a2e commit 84f2db1
Show file tree
Hide file tree
Showing 4 changed files with 307 additions and 332 deletions.
15 changes: 6 additions & 9 deletions examples/ConvertToMapOfFinSets.g
Original file line number Diff line number Diff line change
Expand Up @@ -28,12 +28,12 @@ Display( g );
#! @EndExample

#! We can also create finite concrete categories with objects
#! not starting from 1, to demonstrate that
#! ConcreteCategoryForCAP( [ [,,,5,6,4], [,,,7,8,9], [,,,,,,8,9,7] ] )
#! and ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] ) yield
#! equivalent categories, i.e. their underlying quivers are
#! the same and they give the same algebroid and category
#! of representations.
#! not starting with $1$, to demonstrate that
#! <C>ConcreteCategoryForCAP( [ [,,,5,6,4], [,,,7,8,9], [,,,,,,8,9,7] ] )</C>
#! and <C>ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] )</C> yield
#! isomorphic categories, in particular, their underlying quivers are
#! isomorphic (here even equal), inducing isomorphic algebroids and
#! isomorphic categories of representations.

#! @Example
ccat := ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] );
Expand All @@ -57,6 +57,3 @@ CatReps2 := Hom( A2, GF3 );
CatReps1 = CatReps2;
#! true
#! @EndExample



61 changes: 30 additions & 31 deletions examples/RelationsOfEndomorphisms.g
Original file line number Diff line number Diff line change
@@ -1,31 +1,30 @@
#! @BeginChunk Endomorphisms

LoadPackage( "CatReps" );

#!
#! Two examples to test if RelationsOfEndomorphisms also works
#! on endomorphisms that aren't bijective.
#! The first example is a constant endomorphism, so applying
#! it twice should be the same as once.

#! @Example
GF3 := HomalgRingOfIntegers(3);
#! GF(3)
ccat := ConcreteCategoryForCAP( [ [1,1,1], [4,5,6], [,,,5,6,4] ] );
#! A finite concrete category
relEndo := RelationsOfEndomorphisms( GF3, ccat );
#! [ Z(3)^0*(a*a) + Z(3)*(a), Z(3)^0*(c*c*c) + Z(3)*(2) ]
#! @EndExample

#! The next example is the permutation by the companion matrix to $a^8-a^3$, so
#! neither $a^5-a^0$, $a^6-a^1$ nor $a^7-a^2$ are zero:

#! @Example
GF3 := HomalgRingOfIntegers(3);
#! GF(3)
ccat := ConcreteCategoryForCAP( [ [2,3,4,5,6,7,8,4] ] );
#! A finite concrete category
relEndo := RelationsOfEndomorphisms( GF3, ccat );
#! [ Z(3)^0*(a*a*a*a*a*a*a*a) + Z(3)*(a*a*a) ]
#! @EndExample
#! @EndChunk
#! @BeginChunk Endomorphisms

LoadPackage( "CatReps" );

#! The two examples below test <C>RelationsOfEndomorphisms</C>
#! on endomorphisms that are not bijective.

#! The first generating morphism of the first example is constant, and hence an idempotent.

#! @Example
GF3 := HomalgRingOfIntegers(3);
#! GF(3)
ccat := ConcreteCategoryForCAP( [ [1,1,1], [4,5,6], [,,,5,6,4] ] );
#! A finite concrete category
relEndo := RelationsOfEndomorphisms( GF3, ccat );
#! [ Z(3)^0*(a*a) + Z(3)*(a), Z(3)^0*(c*c*c) + Z(3)*(2) ]
#! @EndExample

#! The next example is a single permutation defined by the companion matrix of $a^8-a^3$, hence
#! neither $a^5-a^0$, $a^6-a^1$, nor $a^7-a^2$ are zero:

#! @Example
GF3 := HomalgRingOfIntegers(3);
#! GF(3)
ccat := ConcreteCategoryForCAP( [ [2,3,4,5,6,7,8,4] ] );
#! A finite concrete category
relEndo := RelationsOfEndomorphisms( GF3, ccat );
#! [ Z(3)^0*(a*a*a*a*a*a*a*a) + Z(3)*(a*a*a) ]
#! @EndExample
#! @EndChunk
Loading

0 comments on commit 84f2db1

Please sign in to comment.