Skip to content

Commit

Permalink
make use of simpler input to create category representations
Browse files Browse the repository at this point in the history
needs FunctorCategories v2020.04.07
  • Loading branch information
mohamed-barakat committed Apr 12, 2020
1 parent 4dc40ba commit 82a118e
Show file tree
Hide file tree
Showing 2 changed files with 27 additions and 24 deletions.
4 changes: 2 additions & 2 deletions PackageInfo.g
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ SetPackageInfo( rec(
PackageName := "CatReps",
Subtitle := "Representations and cohomology of finite categories",
Version := Maximum( [
"2020.04.06", ## Mohamed's version
"2020.04.07", ## Mohamed's version
## this line prevents merge conflicts
"2020.01.01", ## Tibor's version
## this line prevents merge conflicts
Expand Down Expand Up @@ -111,7 +111,7 @@ Dependencies := rec(
[ "SubcategoriesForCAP", ">= 2020.02.02" ],
[ "MatricesForHomalg", ">= 2020.02.02" ],
[ "Toposes", ">= 2020.02.19" ],
[ "FunctorCategories", ">= 2020.04.04" ],
[ "FunctorCategories", ">= 2020.04.07" ],
],
SuggestedOtherPackages := [ ],
ExternalConditions := [ ],
Expand Down
47 changes: 25 additions & 22 deletions examples/CategoryOfRepresentations.g
Original file line number Diff line number Diff line change
Expand Up @@ -133,47 +133,50 @@ Display( const );
#! 1
#!
#! An identity morphism in Category of matrices over GF(3)
V1 := VectorSpaceObject( 5, GF3 );
#! <A vector space object over GF(3) of dimension 5>
V2 := VectorSpaceObject( 4, GF3 );
#! <A vector space object over GF(3) of dimension 4>
d := One(GF3) * [[1,1,0,0,0],[0,1,1,0,0],[0,0,1,0,0],[0,0,0,1,1],[0,0,0,0,1]];;
d := HomalgMatrix( d, 5, 5, GF3 );;
d := VectorSpaceMorphism( V1, d, V1 );
#! <A morphism in Category of matrices over GF(3)>
Display( d );
d := [[1,1,0,0,0],[0,1,1,0,0],[0,0,1,0,0],[0,0,0,1,1],[0,0,0,0,1]];;
e := [[0,1,0,0],[0,0,1,0],[0,0,0,0],[0,1,0,1],[0,0,1,0]];;
f := [[1,1,0,0],[0,1,1,0],[0,0,1,0],[0,0,0,1]];;
nine := AsObjectInHomCategory( kq, [ 5, 4 ], [ d, e, f ] );
#! <(1)->5, (2)->4; (a)->5x5, (b)->5x4, (c)->4x4>
Display( nine );
#! An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
#! over GF(3) defined by the following data:
#!
#!
#! Image of <(1)>:
#! A vector space object over GF(3) of dimension 5
#!
#! Image of <(2)>:
#! A vector space object over GF(3) of dimension 4
#!
#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
#! 1 1 . . .
#! . 1 1 . .
#! . . 1 . .
#! . . . 1 1
#! . . . . 1
#!
#! A morphism in Category of matrices over GF(3)
e := One(GF3) * [[0,1,0,0],[0,0,1,0],[0,0,0,0],[0,1,0,1],[0,0,1,0]];;
e := HomalgMatrix( e, 5, 4, GF3 );;
e := VectorSpaceMorphism( V1, e, V2 );
#! <A morphism in Category of matrices over GF(3)>
Display( e );
#!
#!
#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
#! . 1 . .
#! . . 1 .
#! . . . .
#! . 1 . 1
#! . . 1 .
#!
#! A morphism in Category of matrices over GF(3)
f := One(GF3) * [[1,1,0,0],[0,1,1,0],[0,0,1,0],[0,0,0,1]];;
f := HomalgMatrix( f, 4, 4, GF3 );;
f := VectorSpaceMorphism( V2, f, V2 );
#! <A morphism in Category of matrices over GF(3)>
Display( f );
#!
#!
#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
#! 1 1 . .
#! . 1 1 .
#! . . 1 .
#! . . . 1
#!
#! A morphism in Category of matrices over GF(3)
nine := AsObjectInHomCategory( kq, [ V1, V2 ], [ d, e, f ] );
#! <(1)->5, (2)->4; (a)->5x5, (b)->5x4, (c)->4x4>
nine(kq.1);
#! <A vector space object over GF(3) of dimension 5>
nine(kq.2);
Expand Down Expand Up @@ -503,7 +506,7 @@ Display( emb );
#! Image of <(1)>:
#! . . 1
#!
#! A split monomorphism in Category of matrices over GF(3)
#! A split monomorphism in Category of matrices over GF(3)
#!
#!
#! Image of <(2)>:
Expand Down

0 comments on commit 82a118e

Please sign in to comment.