-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* pr-13: bumped Tibor's version recode ibmpc..lat1 examples/DecomposeOnceByRandomEndomorphism.g finished example DecomposeOnceByRandomEndomorphism and solved the documentation problem. Tests run, no errors. Included example in documentation, but it will not appear as example between C3C3 and C4C4 in the printed manual. Maybe need to change CatRepsWithCAP.gd ? newline at end Example for one step of decomposition of fortyone. Compare the block diagonal structure of matrices fortyone(kq.a) with S(kq.a). Some tests needed.
- Loading branch information
Showing
3 changed files
with
305 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,300 @@ | ||
#! @BeginChunk DecomposeOnce | ||
|
||
LoadPackage( "CatReps" ); | ||
|
||
#! @BeginExample | ||
c3c3 := ConcreteCategoryForCAP( [ [2,3,1], [4,5,6], [,,,5,6,4] ] ); | ||
#! A finite concrete category | ||
GF3 := HomalgRingOfIntegers( 3 ); | ||
#! GF(3) | ||
kq := Algebroid( GF3, c3c3 ); | ||
#! Algebroid generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2] | ||
SetIsLinearClosureOfACategory( kq, true ); | ||
CatReps := Hom( kq, GF3 ); | ||
#! The category of functors: Algebroid generated by the right quiver | ||
#! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3) | ||
d := [[1,1,0,0,0],[0,1,1,0,0],[0,0,1,0,0],[0,0,0,1,1],[0,0,0,0,1]];; | ||
e := [[0,1,0,0],[0,0,1,0],[0,0,0,0],[0,1,0,1],[0,0,1,0]];; | ||
f := [[1,1,0,0],[0,1,1,0],[0,0,1,0],[0,0,0,1]];; | ||
nine := AsObjectInHomCategory( kq, [ 5, 4 ], [ d, e, f ] ); | ||
#! <(1)->5, (2)->4; (a)->5x5, (b)->5x4, (c)->4x4> | ||
DecomposeOnceByRandomEndomorphism( nine ); | ||
#! fail | ||
#! @EndExample | ||
|
||
#! The above shows that our representation <C>nine</C> is | ||
#! indecomposable (with a high probability). | ||
#! We use the tensor product to generate another representation | ||
#! <C>fortyone</C>, that is hopefully decomposable, and | ||
#! inspect the two resulting embeddings <C>iota</C> and | ||
#! <C>kappa</C>. | ||
|
||
#! @BeginExample | ||
fortyone := TensorProductOnObjects( nine, nine ); | ||
#! <(1)->25, (2)->16; (a)->25x25, (b)->25x16, (c)->16x16> | ||
result := DecomposeOnceByRandomEndomorphism( fortyone ); | ||
#! [ <(1)->3x25, (2)->1x16>, <(1)->22x25, (2)->15x16> ] | ||
iota := result[1]; | ||
#! <(1)->3x25, (2)->1x16> | ||
kappa := result[2]; | ||
#! <(1)->22x25, (2)->15x16> | ||
Display( fortyone ); | ||
#! An object in The category of functors: Algebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices | ||
#! over GF(3) defined by the following data: | ||
#! | ||
#! | ||
#! Image of <(1)>: | ||
#! A vector space object over GF(3) of dimension 25 | ||
#! | ||
#! Image of <(2)>: | ||
#! A vector space object over GF(3) of dimension 16 | ||
#! | ||
#! Image of (1)-[{ Z(3)^0*(a) }]->(1): | ||
#! 1 1 . . . 1 1 . . . . . . . . . . . . . . . . . . | ||
#! . 1 1 . . . 1 1 . . . . . . . . . . . . . . . . . | ||
#! . . 1 . . . . 1 . . . . . . . . . . . . . . . . . | ||
#! . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . . | ||
#! . . . . 1 . . . . 1 . . . . . . . . . . . . . . . | ||
#! . . . . . 1 1 . . . 1 1 . . . . . . . . . . . . . | ||
#! . . . . . . 1 1 . . . 1 1 . . . . . . . . . . . . | ||
#! . . . . . . . 1 . . . . 1 . . . . . . . . . . . . | ||
#! . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . . | ||
#! . . . . . . . . . 1 . . . . 1 . . . . . . . . . . | ||
#! . . . . . . . . . . 1 1 . . . . . . . . . . . . . | ||
#! . . . . . . . . . . . 1 1 . . . . . . . . . . . . | ||
#! . . . . . . . . . . . . 1 . . . . . . . . . . . . | ||
#! . . . . . . . . . . . . . 1 1 . . . . . . . . . . | ||
#! . . . . . . . . . . . . . . 1 . . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . 1 1 . . . 1 1 . . . | ||
#! . . . . . . . . . . . . . . . . 1 1 . . . 1 1 . . | ||
#! . . . . . . . . . . . . . . . . . 1 . . . . 1 . . | ||
#! . . . . . . . . . . . . . . . . . . 1 1 . . . 1 1 | ||
#! . . . . . . . . . . . . . . . . . . . 1 . . . . 1 | ||
#! . . . . . . . . . . . . . . . . . . . . 1 1 . . . | ||
#! . . . . . . . . . . . . . . . . . . . . . 1 1 . . | ||
#! . . . . . . . . . . . . . . . . . . . . . . 1 . . | ||
#! . . . . . . . . . . . . . . . . . . . . . . . 1 1 | ||
#! . . . . . . . . . . . . . . . . . . . . . . . . 1 | ||
#! | ||
#! A morphism in Category of matrices over GF(3) | ||
#! | ||
#! | ||
#! Image of (1)-[{ Z(3)^0*(b) }]->(2): | ||
#! . . . . . 1 . . . . . . . . . . | ||
#! . . . . . . 1 . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . 1 . 1 . . . . . . . . | ||
#! . . . . . . 1 . . . . . . . . . | ||
#! . . . . . . . . . 1 . . . . . . | ||
#! . . . . . . . . . . 1 . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . 1 . 1 . . . . | ||
#! . . . . . . . . . . 1 . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . 1 . . . . . . . 1 . . | ||
#! . . . . . . 1 . . . . . . . 1 . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . 1 . 1 . . . . . 1 . 1 | ||
#! . . . . . . 1 . . . . . . . 1 . | ||
#! . . . . . . . . . 1 . . . . . . | ||
#! . . . . . . . . . . 1 . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . 1 . 1 . . . . | ||
#! . . . . . . . . . . 1 . . . . . | ||
#! | ||
#! A morphism in Category of matrices over GF(3) | ||
#! | ||
#! | ||
#! Image of (2)-[{ Z(3)^0*(c) }]->(2): | ||
#! 1 1 . . 1 1 . . . . . . . . . . | ||
#! . 1 1 . . 1 1 . . . . . . . . . | ||
#! . . 1 . . . 1 . . . . . . . . . | ||
#! . . . 1 . . . 1 . . . . . . . . | ||
#! . . . . 1 1 . . 1 1 . . . . . . | ||
#! . . . . . 1 1 . . 1 1 . . . . . | ||
#! . . . . . . 1 . . . 1 . . . . . | ||
#! . . . . . . . 1 . . . 1 . . . . | ||
#! . . . . . . . . 1 1 . . . . . . | ||
#! . . . . . . . . . 1 1 . . . . . | ||
#! . . . . . . . . . . 1 . . . . . | ||
#! . . . . . . . . . . . 1 . . . . | ||
#! . . . . . . . . . . . . 1 1 . . | ||
#! . . . . . . . . . . . . . 1 1 . | ||
#! . . . . . . . . . . . . . . 1 . | ||
#! . . . . . . . . . . . . . . . 1 | ||
#! | ||
#! A morphism in Category of matrices over GF(3) | ||
S := DirectSum( [ Source( iota ), Source( kappa ) ] ); | ||
#! <(1)->25, (2)->16; (a)->25x25, (b)->25x16, (c)->16x16> | ||
Display( S ); | ||
#! An object in The category of functors: Algebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices | ||
#! over GF(3) defined by the following data: | ||
#! | ||
#! | ||
#! Image of <(1)>: | ||
#! A vector space object over GF(3) of dimension 25 | ||
#! | ||
#! Image of <(2)>: | ||
#! A vector space object over GF(3) of dimension 16 | ||
#! | ||
#! Image of (1)-[{ Z(3)^0*(a) }]->(1): | ||
#! . 2 . . . . . . . . . . . . . . . . . . . . . . . | ||
#! 1 2 2 . . . . . . . . . . . . . . . . . . . . . . | ||
#! . . 1 . . . . . . . . . . . . . . . . . . . . . . | ||
#! . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . . | ||
#! . . . . 1 1 . . . 1 1 . . . . . . . . . . . . . . | ||
#! . . . . . 1 . . . . 1 . . . . . . . . . . . . . . | ||
#! . . . . . . 1 1 . . . 1 1 . . . . . . . . . . . . | ||
#! . . . . . . . 1 . . . . 1 . . . . . . . . . . . . | ||
#! . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . . | ||
#! . . . . . . . . . 1 1 . . . 1 1 . . . . . . . . . | ||
#! . . . . . . . . . . 1 . . . . 1 . . . . . . . . . | ||
#! . . . . . . . . . . . 1 1 . . . 1 1 . . . . . . . | ||
#! . . . . . . . . . . . . 1 . . . . 1 . . . . . . . | ||
#! . . . . . . . . . . . . . 1 1 . . . . . . . . . . | ||
#! . . . . . . . . . . . . . . 1 1 . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . 1 . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . . 1 1 . . . . . . . | ||
#! . . . . . . . . . . . . . . . . . 1 . . . . . . . | ||
#! . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . . | ||
#! . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 . | ||
#! . . . . . . . . . . . . . . . . . . . . 1 . . 1 . | ||
#! . . . . . . . . . . . . . . . . . . . . . 1 1 . . | ||
#! . . . . . . . . . . . . . . . . . . . . . . 1 1 . | ||
#! . . . . . . . . . . . . . . . . . . . . . . . 1 . | ||
#! . . . . . . . . . . . . . . . . . . . . . . . . 1 | ||
#! | ||
#! A morphism in Category of matrices over GF(3) | ||
#! | ||
#! | ||
#! Image of (1)-[{ Z(3)^0*(b) }]->(2): | ||
#! 2 . . . . . . . . . . . . . . . | ||
#! 1 . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . 1 . . . . . . . . . | ||
#! . . . . . . . 1 . . . . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . 1 . 1 . . . . . . . | ||
#! . . . . . . . 1 . . . . . . . . | ||
#! . . . . . . . . . . 1 . . . . . | ||
#! . . . . . . . . . . . 1 . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . . 1 . 1 . . . | ||
#! . . . . . . . . . . . 1 . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . 1 . . . . . . . 1 . | ||
#! . . . . . . . 1 . . . . . . . 1 | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . . . . 1 . . . . . | ||
#! . . . . . . . . . . . 1 . . . . | ||
#! . . . . . . . . . . . . . . . . | ||
#! . . . . . . . 2 . . 1 . 1 . . 2 | ||
#! | ||
#! A morphism in Category of matrices over GF(3) | ||
#! | ||
#! | ||
#! Image of (2)-[{ Z(3)^0*(c) }]->(2): | ||
#! 1 . . . . . . . . . . . . . . . | ||
#! . 1 1 . . 1 1 . . . . . . . . . | ||
#! . . 1 1 . . 1 1 . . . . . . . . | ||
#! . . . 1 . . . 1 . . . . . . . . | ||
#! . . . . 1 . . . 1 . . . . . . . | ||
#! . . . . . 1 1 . . 1 1 . . . . . | ||
#! . . . . . . 1 1 . . 1 1 . . . . | ||
#! . . . . . . . 1 . . . 1 . . . . | ||
#! . . . . . . . . 1 . . . 1 . . . | ||
#! . . . . . . . . . 1 1 . . . . . | ||
#! . . . . . . . . . . 1 1 . . . . | ||
#! . . . . . . . . . . . 1 . . . . | ||
#! . . . . . . . . . . . . 1 . . . | ||
#! . . . . . . . . . . . . . 1 1 . | ||
#! . . . . . . . . . . . . . . 1 1 | ||
#! . . . . . . . . . . . . . . . 1 | ||
#! | ||
#! A morphism in Category of matrices over GF(3) | ||
#! @EndExample | ||
|
||
#! Comparing the matrices of <C>fortyone</C> with those of | ||
#! <C>S</C>, we see | ||
#! that after decomposing once, we have separated one small | ||
#! matrix on the diagonal: A $3\times 3$-matrix from <C>S(kq.a)</C>, | ||
#! a $3 \times 1$-matrix from <C>S(kq.b)</C> and a $1\times 1$-matrix | ||
#! from <C>S(kq.c)</C>. This matches with the source of the | ||
#! embedding <C>iota</C>. | ||
|
||
#! @BeginExample | ||
Display( iota ); | ||
#! A morphism in The category of functors: Algebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices | ||
#! over GF(3) defined by the following data: | ||
#! | ||
#! | ||
#! Image of <(1)>: | ||
#! 2 2 . 1 1 . . . . . . . . . . 1 2 1 2 1 . . . . . | ||
#! 1 2 1 2 1 1 2 1 2 1 . . . . . 2 . . 1 . 2 . . 1 . | ||
#! . . 2 . . . 1 2 . 2 2 . . 1 . . . 1 . . . 2 . . 1 | ||
#! | ||
#! A split monomorphism in Category of matrices over GF(3) | ||
#! | ||
#! | ||
#! Image of <(2)>: | ||
#! . . . . . . . . . . . . . . . 1 | ||
#! | ||
#! A split monomorphism in Category of matrices over GF(3) | ||
Display( Source( iota) ); | ||
#! An object in The category of functors: Algebroid generated by the | ||
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices | ||
#! over GF(3) defined by the following data: | ||
#! | ||
#! Image of <(1)>: | ||
#! A vector space object over GF(3) of dimension 3 | ||
#! | ||
#! Image of <(2)>: | ||
#! A vector space object over GF(3) of dimension 1 | ||
#! | ||
#! Image of (1)-[{ Z(3)^0*(a) }]->(1): | ||
#! . 2 . | ||
#! 1 2 2 | ||
#! . . 1 | ||
#! | ||
#! A morphism in Category of matrices over GF(3) | ||
#! | ||
#! | ||
#! Image of (1)-[{ Z(3)^0*(b) }]->(2): | ||
#! 2 | ||
#! 1 | ||
#! . | ||
#! | ||
#! A morphism in Category of matrices over GF(3) | ||
#! | ||
#! | ||
#! Image of (2)-[{ Z(3)^0*(c) }]->(2): | ||
#! 1 | ||
#! | ||
#! A morphism in Category of matrices over GF(3) | ||
#! @EndExample | ||
|
||
#! We can then look at the other embedding of the direct sum | ||
#! decomposition, <C>kappa</C>. The iteration of | ||
#! <C>WeakDirectSumDecomposition</C> will continue then | ||
#! with <C>Source( kappa )</C>. Each time the random | ||
#! endomorphism will decompose the representation, | ||
#! lowering the dimensions of each object at most by $3$. | ||
|
||
#! @Example | ||
Source( kappa ); | ||
#! <(1)->22, (2)->15; (a)->22x22, (b)->22x15, (c)->15x15> | ||
result2 := DecomposeOnceByRandomEndomorphism( Source( kappa ) ); | ||
#! [ <(1)->3x22, (2)->3x15>, <(1)->19x22, (2)->12x15> ] | ||
#! @EndExample | ||
#! @EndChunk |