Skip to content

Commit

Permalink
comply with FunctorCategories v2020.04.02
Browse files Browse the repository at this point in the history
  • Loading branch information
mohamed-barakat committed Apr 6, 2020
1 parent 33b4507 commit 6c70ff7
Show file tree
Hide file tree
Showing 2 changed files with 37 additions and 47 deletions.
4 changes: 2 additions & 2 deletions PackageInfo.g
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ SetPackageInfo( rec(
PackageName := "CatReps",
Subtitle := "Representations and cohomology of finite categories",
Version := Maximum( [
"2020.02.23", ## Mohamed's version
"2020.04.02", ## Mohamed's version
## this line prevents merge conflicts
"2020.01.01", ## Tibor's version
## this line prevents merge conflicts
Expand Down Expand Up @@ -110,7 +110,7 @@ Dependencies := rec(
[ "SubcategoriesForCAP", ">= 2020.02.02" ],
[ "MatricesForHomalg", ">= 2020.02.02" ],
[ "Toposes", ">= 2020.02.19" ],
[ "FunctorCategories", ">= 2020.02.23" ],
[ "FunctorCategories", ">= 2020.04.02" ],
],
SuggestedOtherPackages := [ ],
ExternalConditions := [ ],
Expand Down
80 changes: 35 additions & 45 deletions examples/ConcreteCategoryWithEndomorphismGroups.g
Original file line number Diff line number Diff line change
Expand Up @@ -80,25 +80,24 @@ CatReps := CategoryOfRepresentations( kq, kmat );
#! The category of functors: Bialgebroid generated by the right quiver
#! q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)
InfoOfInstalledOperationsOfCategory( CatReps );
#! 102 primitive operations were used to derive 207 operations for this category which
#! 109 primitive operations were used to derive 230 operations for this category which
#! * IsLinearCategoryOverCommutativeRing
#! * IsSymmetricMonoidalCategory
#! * IsAbelianCategory
CommutativeRingOfLinearCategory( CatReps );
#! GF(3)
zero := ZeroObject( CatReps );
#! <A zero object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)>
#! <(1)->0, (2)->0; (a)->0x0, (b)->0x0, (c)->0x0>
Display( zero );
#! An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
#! over GF(3) defined by the following data:
#!
#!
#! Image of (1):
#! Image of <(1)>:
#! A vector space object over GF(3) of dimension 0
#!
#! Image of (2):
#! Image of <(2)>:
#! A vector space object over GF(3) of dimension 0
#!
#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
Expand All @@ -118,18 +117,17 @@ Display( zero );
#!
#! A zero, identity morphism in Category of matrices over GF(3)
unit := TensorUnit( CatReps );
#! <An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)>
#! <(1)->1, (2)->1; (a)->1x1, (b)->1x1, (c)->1x1>
Display( unit );
#! An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
#! over GF(3) defined by the following data:
#!
#!
#! Image of (1):
#! Image of <(1)>:
#! A vector space object over GF(3) of dimension 1
#!
#! Image of (2):
#! Image of <(2)>:
#! A vector space object over GF(3) of dimension 1
#!
#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
Expand Down Expand Up @@ -188,8 +186,7 @@ Display( f );
#!
#! A morphism in Category of matrices over GF(3)
nine := AsObjectInHomCategory( kq, [ V1, V2 ], [ d, e, f ] );
#! <An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)>
#! <(1)->5, (2)->4; (a)->5x5, (b)->5x4, (c)->4x4>
nine(kq.1);
#! <A vector space object over GF(3) of dimension 5>
nine(kq.2);
Expand All @@ -207,8 +204,7 @@ Display( nine(kq.b) );
IsWellDefined( nine );
#! true
fortyone := TensorProductOnObjects( nine, nine );
#! <An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)>
#! <(1)->25, (2)->16; (a)->25x25, (b)->25x16, (c)->16x16>
IsWellDefined( fortyone );
#! true
fortyone( kq.1 );
Expand All @@ -227,10 +223,10 @@ Display( fortyone );
#! over GF(3) defined by the following data:
#!
#!
#! Image of (1):
#! Image of <(1)>:
#! A vector space object over GF(3) of dimension 25
#!
#! Image of (2):
#! Image of <(2)>:
#! A vector space object over GF(3) of dimension 16
#!
#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
Expand Down Expand Up @@ -318,21 +314,19 @@ d := List( etas, eta -> List( SetOfObjects( kq ),
#! [ [ 3, 0 ], [ 3, 1 ], [ 3, 3 ], [ 3, 3 ], [ 0, 3 ],
#! [ 3, 0 ], [ 3, 0 ], [ 3, 0 ], [ 1, 3 ], [ 3, 3 ] ]
eta := etas[3];
#! <A monomorphism in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)>
#! <(1)->3x25, (2)->3x16>
six := Source( eta );
#! <An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)>
#! <(1)->3, (2)->3; (a)->3x3, (b)->3x3, (c)->3x3>
Display( six );
#! An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
#! over GF(3) defined by the following data:
#!
#!
#! Image of (1):
#! Image of <(1)>:
#! A vector space object over GF(3) of dimension 3
#!
#! Image of (2):
#! Image of <(2)>:
#! A vector space object over GF(3) of dimension 3
#!
#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
Expand All @@ -358,21 +352,19 @@ Display( six );
#!
#! A morphism in Category of matrices over GF(3)
eta2 := TensorProductOnMorphisms( eta, eta );
#! <A morphism in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)>
#! <(1)->9x625, (2)->9x256>
thirtyfive := CokernelObject( eta );
#! <An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)>
#! <(1)->22, (2)->13; (a)->22x22, (b)->22x13, (c)->13x13>
Display( thirtyfive );
#! An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
#! over GF(3) defined by the following data:
#!
#!
#! Image of (1):
#! Image of <(1)>:
#! A vector space object over GF(3) of dimension 22
#!
#! Image of (2):
#! Image of <(2)>:
#! A vector space object over GF(3) of dimension 13
#!
#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
Expand Down Expand Up @@ -446,23 +438,21 @@ Display( thirtyfive );
#!
#! A morphism in Category of matrices over GF(3)
iso := UniversalMorphismFromDirectSum( etas );
#! <A morphism in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)>
#! <(1)->25x25, (2)->16x16>
IsIsomorphism( iso );
#! true
iso;
#! <An isomorphism in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices over GF(3)>
#! <(1)->25x25, (2)->16x16>
Display( Source( iso ) );
#! An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
#! over GF(3) defined by the following data:
#!
#!
#! Image of (1):
#! Image of <(1)>:
#! A vector space object over GF(3) of dimension 25
#!
#! Image of (2):
#! Image of <(2)>:
#! A vector space object over GF(3) of dimension 16
#!
#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
Expand Down Expand Up @@ -550,7 +540,7 @@ Display( iso );
#! over GF(3) defined by the following data:
#!
#!
#! Image of (1):
#! Image of <(1)>:
#! . . 1 . . . 2 1 . 1 1 . . 2 . . . 1 . . . . . . .
#! . . . . . . . . . . . . . . . . . . . . . . 1 . .
#! . 1 2 . 2 1 1 2 2 2 1 . . 2 . . 1 . . 2 2 . . 1 .
Expand Down Expand Up @@ -580,7 +570,7 @@ Display( iso );
#! An isomorphism in Category of matrices over GF(3)
#!
#!
#! Image of (2):
#! Image of <(2)>:
#! . . . . . . . . . . . . . . . 1
#! . . . . . . . . . . . . 1 . . .
#! . . . . . . . . . . . . . 1 . .
Expand All @@ -600,19 +590,17 @@ Display( iso );
#!
#! An isomorphism in Category of matrices over GF(3)
proj1 := YonedaProjective( CatReps, kq.1 );
#! <A projective object in The category of functors: Bialgebroid
#! generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2]
#! -> Category of matrices over GF(3)>
#! <(1)->3, (2)->3; (a)->3x3, (b)->3x3, (c)->3x3>
Display( proj1 );
#! An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
#! over GF(3) defined by the following data:
#!
#!
#! Image of (1):
#! Image of <(1)>:
#! A vector space object over GF(3) of dimension 3
#!
#! Image of (2):
#! Image of <(2)>:
#! A vector space object over GF(3) of dimension 3
#!
#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
Expand All @@ -638,28 +626,30 @@ Display( proj1 );
#!
#! A morphism in Category of matrices over GF(3)
proj2 := YonedaProjective( CatReps, kq.2 );
#! <A projective object in The category of functors: Bialgebroid
#! generated by the right quiver q(2)[a:1->1,b:1->2,c:2->2]
#! -> Category of matrices over GF(3)>
#! <(1)->0, (2)->3; (a)->0x0, (b)->0x3, (c)->3x3>
Display( proj2 );
#! An object in The category of functors: Bialgebroid generated by the
#! right quiver q(2)[a:1->1,b:1->2,c:2->2] -> Category of matrices
#! over GF(3) defined by the following data:
#!
#!
#! Image of (1):
#! Image of <(1)>:
#! A vector space object over GF(3) of dimension 0
#!
#! Image of (2):
#! Image of <(2)>:
#! A vector space object over GF(3) of dimension 3
#!
#! Image of (1)-[{ Z(3)^0*(a) }]->(1):
#! (an empty 0 x 0 matrix)
#!
#! A zero, isomorphism in Category of matrices over GF(3)
#!
#!
#! Image of (1)-[{ Z(3)^0*(b) }]->(2):
#! (an empty 0 x 3 matrix)
#!
#! A zero, split monomorphism in Category of matrices over GF(3)
#!
#!
#! Image of (2)-[{ Z(3)^0*(c) }]->(2):
#! . 1 .
Expand Down

0 comments on commit 6c70ff7

Please sign in to comment.