Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Diagrams for docu of monoidal categories #314

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 83 additions & 0 deletions CAP/gap/MonoidalCategories.gd
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,38 @@ DeclareGlobalVariable( "MONOIDAL_CATEGORIES_METHOD_NAME_RECORD" );
#! is called a <Emph>monoidal category</Emph>, if
#! * for all objects $a,b,c,d$, the pentagon identity holds:
#! $(\alpha_{a,b,c} \otimes \mathrm{id}_d) \circ \alpha_{a,b \otimes c, d} \circ ( \mathrm{id}_a \otimes \alpha_{b,c,d} ) = \alpha_{a \otimes b, c, d} \circ \alpha_{a,b,c \otimes d}$,
#! @BeginLatexOnly
#! \begin{center}
#! \begin{tikzpicture}
#! \def\w{2};
#! \node (a) at (0,2*\w) {$a \otimes ( b \otimes ( c \otimes d ) )$};
#! \node (bl) at (1.5*\w,\w) {$(a \otimes b) \otimes (c \otimes d )$};
#! \node (br) at (-1.5*\w,\w) {$a \otimes ( (b \otimes c ) \otimes d )$};
#! \node (cl) at (1.5*\w,0) {$( ( a \otimes b ) \otimes c ) \otimes d )$};
#! \node (cr) at (-1.5*\w,0) {$( a \otimes ( b \otimes c ) ) \otimes d$};
#! \draw[-latex] (cr) to node[pos=0.45, above] {$\alpha_{a,b,c} \otimes \mathrm{id}_{d}$} (cl);
#! \draw[-latex] (br) to node[pos=0.45, left] {$\alpha_{a,b\otimes c, d}$} (cr);
#! \draw[-latex] (bl) to node[pos=0.45, right] {$\alpha_{a \otimes b, c, d}$} (cl);
#! \draw[-latex] (a) to node[pos=0.45, above left] {$\mathrm{id}_a \otimes \alpha_{b,c,d}$} (br);
#! \draw[-latex] (a) to node[pos=0.45, above right] {$\alpha_{a,b,c \otimes d}$} (bl);
#! \end{tikzpicture}
#! \end{center}
#! @EndLatexOnly
#! * for all objects $a,c$, the triangle identity holds:
#! $( \rho_a \otimes \mathrm{id}_c ) \circ \alpha_{a,1,c} = \mathrm{id}_a \otimes \lambda_c$.
#! @BeginLatexOnly
#! \begin{center}
#! \begin{tikzpicture}
#! \def\w{2};
#! \node (a) at (0,0) {$a \otimes c$};
#! \node (br) at (1.5*\w,\w) {$(a \otimes 1) \otimes c$};
#! \node (bl) at (-1.5*\w,\w) {$a \otimes ( 1 \otimes c )$};
#! \draw[-latex] (bl) to node[pos=0.45, above] {$\alpha_{a,1,c}$} (br);
#! \draw[-latex] (bl) to node[pos=0.45, below left] {$\mathrm{id}_a \otimes \lambda_c$} (a);
#! \draw[-latex] (br) to node[pos=0.45, below right] {$\rho_a \otimes \mathrm{id}_c$} (a);
#! \end{tikzpicture}
#! \end{center}
#! @EndLatexOnly

#! The corresponding GAP property is given by
#! <C>IsMonoidalCategory</C>.
Expand Down Expand Up @@ -550,8 +580,61 @@ DeclareOperation( "AddRightDistributivityFactoringWithGivenObjects",
#! is called a <Emph>braided monoidal category</Emph>
#! if
#! * $\lambda_a \circ B_{a,1} = \rho_a$,
#! @BeginLatexOnly
#! \begin{center}
#! \begin{tikzpicture}
#! \def\w{2};
#! \node (at1) at (0,\w) {$a \otimes 1$};
#! \node (1ta) at (\w,\w) {$1 \otimes a$};
#! \node (a) at (\w,0) {$a$};
#! \draw[-latex] (at1) to node[pos=0.45, above] {$B_{a,1}$} (1ta);
#! \draw[-latex] (1ta) to node[pos=0.45, right] {$\lambda_a$} (a);
#! \draw[-latex] (at1) to node[pos=0.45, below left] {$\rho_a$} (a);
#! \end{tikzpicture}
#! \end{center}
#! @EndLatexOnly
#! * $(B_{c,a} \otimes \mathrm{id}_b) \circ \alpha_{c,a,b} \circ B_{a \otimes b,c} = \alpha_{a,c,b} \circ ( \mathrm{id}_a \otimes B_{b,c}) \circ \alpha^{-1}_{a,b,c}$,
#! @BeginLatexOnly
#! \begin{center}
#! \begin{tikzpicture}
#! \def\w{3};
#! \def\h{2};
#! \node (p1) at (0,2*\h) {$(a \otimes b ) \otimes c$};
#! \node (p2) at (\w,2*\h) {$c \otimes (a \otimes b)$};
#! \node (p3) at (-\w,\h) {$a \otimes (b \otimes c)$};
#! \node (p4) at (2*\w,\h) {$(c \otimes a) \otimes b$};
#! \node (p5) at (0,0) {$a \otimes (c \otimes b)$};
#! \node (p6) at (\w,0) {$(a \otimes c) \otimes b$};
#! \draw[-latex] (p1) to node[pos=0.45, above] {$B_{a \otimes b, c}$} (p2);
#! \draw[-latex] (p2) to node[pos=0.45, above right] {$\alpha_{c,a,b}$} (p4);
#! \draw[-latex] (p4) to node[pos=0.45, below right] {$B_{c,a} \otimes \mathrm{id}_{b}$} (p6);
#! \draw[-latex] (p1) to node[pos=0.45, above left] {$\alpha^{-1}_{a,b,c}$} (p3);
#! \draw[-latex] (p3) to node[pos=0.45, below left] {$\mathrm{id}_{a} \otimes B_{b,c}$} (p5);
#! \draw[-latex] (p5) to node[pos=0.45, above] {$\alpha_{a,c,b}$} (p6);
#! \end{tikzpicture}
#! \end{center}
#! @EndLatexOnly
#! * $( \mathrm{id}_b \otimes B_{c,a} ) \circ \alpha^{-1}_{b,c,a} \circ B_{a,b \otimes c} = \alpha^{-1}_{b,a,c} \circ (B_{a,b} \otimes \mathrm{id}_c) \circ \alpha_{a,b,c}$.
#! @BeginLatexOnly
#! \begin{center}
#! \begin{tikzpicture}
#! \def\w{3};
#! \def\h{2};
#! \node (p1) at (0,2*\h) {$a \otimes ( b \otimes c )$};
#! \node (p2) at (\w,2*\h) {$( b \otimes c ) \otimes a$};
#! \node (p3) at (-\w,\h) {$(a \otimes b) \otimes c$};
#! \node (p4) at (2*\w,\h) {$b \otimes ( c \otimes a)$};
#! \node (p5) at (0,0) {$(b \otimes a) \otimes c)$};
#! \node (p6) at (\w,0) {$b \otimes (a \otimes c)$};
#! \draw[-latex] (p1) to node[pos=0.45, above] {$B_{a, b \otimes c}$} (p2);
#! \draw[-latex] (p2) to node[pos=0.45, above right] {$\alpha^{-1}_{b,c,a}$} (p4);
#! \draw[-latex] (p4) to node[pos=0.45, below right] {$\mathrm{id}_{b} \otimes B_{c,a}$} (p6);
#! \draw[-latex] (p1) to node[pos=0.45, above left] {$\alpha_{a,b,c}$} (p3);
#! \draw[-latex] (p3) to node[pos=0.45, below left] {$B_{a,b} \otimes \mathrm{id}_{c}$} (p5);
#! \draw[-latex] (p5) to node[pos=0.45, above] {$\alpha^{-1}_{b,a,c}$} (p6);
#! \end{tikzpicture}
#! \end{center}
#! @EndLatexOnly

#! The corresponding GAP property is given by
#! <C>IsBraidedMonoidalCategory</C>.
Expand Down