Skip to content

Commit

Permalink
Merge branch 'testing' into dev
Browse files Browse the repository at this point in the history
  • Loading branch information
holgerteichgraeber committed Jul 5, 2019
2 parents 88b990e + 200edfc commit 5443a35
Show file tree
Hide file tree
Showing 6 changed files with 13 additions and 11 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ keywords = ["clustering", "JuMP", "optimization"]
license = "MIT"
desc = "julia implementation of using different clustering methods for finding representative periods for the optimization of energy systems"
author = ["Holger Teichgraeber"]
version = "0.4.1"
version = "0.4.2"

[deps]
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
Expand Down
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
[![](https://img.shields.io/badge/docs-dev-blue.svg)](https://holgerteichgraeber.github.io/ClustForOpt.jl/dev)
[![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE)
[![Build Status](https://travis-ci.com/holgerteichgraeber/ClustForOpt.jl.svg?token=HRFemjSxM1NBCsbHGNDG&branch=master)](https://travis-ci.com/holgerteichgraeber/ClustForOpt.jl)
[![codecov](https://codecov.io/gh/holgerteichgraeber/ClustForOpt.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/holgerteichgraeber/ClustForOpt.jl)


[ClustForOpt](https://github.com/holgerteichgraeber/ClustForOpt.jl) is a [julia](https://www.juliaopt.com) implementation of unsupervised machine learning methods for finding representative periods for energy systems optimization problems.
Expand Down Expand Up @@ -55,7 +56,7 @@ If you find ClustForOpt useful in your work, we kindly request that you cite the

## Quick Start Guide

This quick start guide introduces the main concepts of using ClustForOpt. For more detail on the different functionalities that ClustForOpt provides, please refer to the subsequent chapters of the documentation or the examples in the [examples](https://github.com/holgerteichgraeber/ClustForOpt.jl/tree/master/examples) folder.
This quick start guide introduces the main concepts of using ClustForOpt. For more detail on the different functionalities that ClustForOpt provides, please refer to the subsequent chapters of the documentation or the examples in the [examples](https://github.com/holgerteichgraeber/ClustForOpt.jl/tree/master/examples) folder, specifically [workflow_introduction.jl](https://github.com/holgerteichgraeber/ClustForOpt.jl/blob/master/examples/workflow_introduction.jl).

Generally, the workflow consists of three steps:
- load data
Expand Down
1 change: 1 addition & 0 deletions docs/src/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
[![](https://img.shields.io/badge/docs-stable-blue.svg)](https://holgerteichgraeber.github.io/ClustForOpt.jl/stable)
[![](https://img.shields.io/badge/docs-dev-blue.svg)](https://holgerteichgraeber.github.io/ClustForOpt.jl/dev)
[![Build Status](https://travis-ci.com/holgerteichgraeber/ClustForOpt.jl.svg?token=HRFemjSxM1NBCsbHGNDG&branch=master)](https://travis-ci.com/holgerteichgraeber/ClustForOpt.jl)
[![codecov](https://codecov.io/gh/holgerteichgraeber/ClustForOpt.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/holgerteichgraeber/ClustForOpt.jl)

[ClustForOpt](https://github.com/holgerteichgraeber/ClustForOpt.jl) is a [julia](https://www.juliaopt.com) implementation of unsupervised machine learning methods for finding representative periods for energy systems optimization problems.
By reducing the number of time steps used in the optimization model, using representative periods leads to significant reductions in computational complexity.
Expand Down
2 changes: 1 addition & 1 deletion docs/src/quickstart.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Quick Start Guide
=================

This quick start guide introduces the main concepts of using ClustForOpt. For more detail on the different functionalities that ClustForOpt provides, please refer to the subsequent chapters of the documentation or the examples in the [examples](https://github.com/holgerteichgraeber/ClustForOpt.jl/tree/master/examples) folder.
This quick start guide introduces the main concepts of using ClustForOpt. For more detail on the different functionalities that ClustForOpt provides, please refer to the subsequent chapters of the documentation or the examples in the [examples](https://github.com/holgerteichgraeber/ClustForOpt.jl/tree/master/examples) folder, specifically [workflow_introduction.jl](https://github.com/holgerteichgraeber/ClustForOpt.jl/blob/master/examples/workflow_introduction.jl).

Generally, the workflow consists of three steps:
- load data
Expand Down
8 changes: 4 additions & 4 deletions test/reference_generation/run_clust.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,8 @@ using Random
reference_results = Dict{String,Any}()

Random.seed!(1111)
for data in ["CEP_GER1","CEP_GER18"]
ts_input_data = load_timeseries_data(Symbol(data))
for data in [:CEP_GER1,:CEP_GER18]
ts_input_data = load_timeseries_data(data)
#mr: method, representation, n_init
mr = [["kmeans","centroid",1000],
["kmeans","medoid",1000],
Expand Down Expand Up @@ -47,8 +47,8 @@ for data in ["CEP_GER1","CEP_GER18"]
end
end

data = "CEP_GER1"
ts_input_data = load_timeseries_data(Symbol(data))
data = :CEP_GER1
ts_input_data = load_timeseries_data(data)
method = "kmedoids_exact"
repr = "medoid"
using Cbc
Expand Down
8 changes: 4 additions & 4 deletions test/run_clust.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,8 @@ using Random
@load normpath(joinpath(dirname(@__FILE__),"reference_generation","run_clust.jld2")) reference_results

Random.seed!(1111)
@testset "run_clust $data" for data in ["CEP_GER1","CEP_GER18"] begin
ts_input_data = load_timeseries_data(Symbol(data))
@testset "run_clust $data" for data in [:CEP_GER1,:CEP_GER18] begin
ts_input_data = load_timeseries_data(data)
#mr: method, representation, n_init
mr = [["kmeans","centroid",1000],
["kmeans","medoid",1000],
Expand Down Expand Up @@ -58,8 +58,8 @@ Random.seed!(1111)
end

# Use the same data for all subsequent tests
data = "CEP_GER1"
ts_input_data = load_timeseries_data(Symbol(data))
data = :CEP_GER1
ts_input_data = load_timeseries_data(data)

using Cbc
optimizer = Cbc.Optimizer
Expand Down

0 comments on commit 5443a35

Please sign in to comment.