Skip to content

Level 3 matrix multiplication using both cublas and mkl.

Notifications You must be signed in to change notification settings

hoilus/CUDA_Matrix_cublas_mkl

Repository files navigation

Level 3 large matrix multiplication by multi-cpus and multi-gpu cores

Comparing computation efficiency of level 3 matrix multiplication using cublas and blas

Author: Liang Hong, Email: [email protected]

1. gpucppadd.cu:

The hardware limits the number of blocks in a single lauch to 65,535 per dimension, and each block has a maximum of 1024 threads per block. In order to break this limit, we can use grid-stride loop to calculate the arrays with arbitrary length.

__global__
void add(int n, float *x, float *y) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = index; i < n; i += stride)
    y[i] = x[i] + y[i];
}

2. gpucpptranspose.cu:

shared memory on-chip is much faster than local and global memory. It is thus a good idea to do the necessar arithemetic calculations on device, and minimize the data transit between gpu and cpu. Moreover, we can use share memory to achieve coalescing in both reads and writes.

__global__
void gpu_matrix_trans_coales_sharedmem(double *mat_in, double *mat_out) {
  __shared__ double tile[TILE_DIM*TILE_DIM];

  int idx = blockIdx.x * TILE_DIM + threadIdx.x;
  int idy = blockIdx.y * TILE_DIM + threadIdx.y;
  int width = gridDim.x * TILE_DIM;

  for (int j = 0; j < TILE_DIM; j += blockSizey) {
    tile[threadIdx.x*TILE_DIM + threadIdx.y + j] = mat_in[(idy+j)*width + idx];
  }

  __syncthreads();

  idx = blockIdx.y * TILE_DIM + threadIdx.x;
  idy = blockIdx.x * TILE_DIM + threadIdx.y;

  for (int j = 0; j < TILE_DIM; j += blockSizey) {
    mat_out[(idy+j)*width + idx] = tile[threadIdx.x + (threadIdx.y+j)*TILE_DIM];
  }
}

For a 1024 x 1024 test matrix:

GPU matrix transpose success!!!
GPU matrix multiplication time: 6.31702 ms.
==11721== Profiling application: ./gputrans
==11721== Profiling result:
Time(%)      Time     Calls       Avg       Min       Max  Name
 62.93%  3.1452ms         1  3.1452ms  3.1452ms  3.1452ms  [CUDA memcpy DtoH]
 25.90%  1.2943ms         1  1.2943ms  1.2943ms  1.2943ms  [CUDA memcpy HtoD]
  4.17%  208.58us         1  208.58us  208.58us  208.58us  gpu_matrix_trans_naive(double*, double*)
  2.61%  130.66us         1  130.66us  130.66us  130.66us  gpu_matrix_trans_coales_sharedmem(double*, double*)
  2.60%  129.73us         1  129.73us  129.73us  129.73us  gpu_matrix_trans_sharedmem(double*, double*)
  1.79%  89.377us         1  89.377us  89.377us  89.377us  gpu_matrix_trans_coales_sharedmem_NoBankConfl(double*, double*)

3. gpucppMatMul.cu:

matrix-matrix multiplication consumes most of the computation time in scientific computations and deep learning. cublas and blas are the best choices when we do GEMM.

How to compile the code including both cublas and blas?

nvcc gpucppMatMul.cu -std=c++11 -lcublas -L/opt/apps/intel/16.0.1.150/compilers_and_libraries_2016.1.150/linux/mkl/lib/intel64 --linker-options /opt/apps/intel/16.0.1.150/compilers_and_libraries_2016.1.150/linux/mkl/lib/intel64/libmkl_intel_lp64.a,/opt/apps/intel/16.0.1.150/compilers_and_libraries_2016.1.150/linux/mkl/lib/intel64/libmkl_sequential.a,/opt/apps/intel/16.0.1.150/compilers_and_libraries_2016.1.150/linux/mkl/lib/intel64/libmkl_core.a,-lpthread -o gpuMul
// Matrix multiplication by cuBLAS
// m x k matrix A, k x n matrix B, m x n matrix C = A x B
// tran(C) = tran(B) x tran(A)
void gpu_blas_multi(double *matB, double *matA, double *matC, int m, int k, int n) {
  int lda = n, ldb = k, ldc = n;
  double alf = 1.0;
  double bet = 0.0;
  double *alpha = &alf;
  double *beta = &bet;

  // Create a handle for cuBLAS
  cublasHandle_t handle;
  cublasCreate(&handle);

  // Do the actual multiplication
  cublasDgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, n, m, k, alpha, matB, lda, matA, ldb, beta, matC, ldc);

  // Destroy the handle
  cublasDestroy(handle);
}

For the two 32768 x 1024 and 1024 x 32768 test matrix:

When we replace blas by cublas, we can have x20 improvement.

GPU matrix multiplication success!!!
GPU matrix multiplication by cublas costs: 5870.52 ms.
GPU matrix multiplication by naive method costs: 10011.6 ms.
CPU matrix multiplication by blas costs: 105.965 s.
==12784== Profiling application: ./gpuMul
==12784== Profiling result:
Time(%)      Time     Calls       Avg       Min       Max  Name
 66.95%  3.81865s         1  3.81865s  3.81865s  3.81865s  [CUDA memcpy DtoH]
 31.67%  1.80622s         1  1.80622s  1.80622s  1.80622s  dgemm_sm_heavy_ldg_nn
  1.39%  79.091ms         3  26.364ms  1.5360us  39.840ms  [CUDA memcpy HtoD]
 60.93%  6.09706s         1  6.09706s  6.09706s  6.09706s  gpu_matrix_multi(double*, double*, double*, int, int, int)

About

Level 3 matrix multiplication using both cublas and mkl.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages